
// Private Golang Security Assessment 05.20.2024 - 05.22.2024

Fast Updates
Flare Network

Fa st U p d a t e s - F l a r e N e t wo r k

Prepared by: HALBORN

Last Updated 06/12/2024

Date of Engagement by: May 20th, 2024 - May 22nd, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
1

CRITICAL
0

HIGH
0

MEDIUM
0

LOW
1

INFORMATIONAL
0

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Key file not encrypted

1 0 0%

1 . I n t r o d u c t i o n

Flare Network engaged Halborn to conduct a security assessment of the Fast Updates Go client
beginning on 2024-05-20 and ending on 2024-05-22. The security assessment was scoped to the source
code provided to the Halborn team.

2 . A s s e s s m e n t S u m m a r y

The team at Halborn was provided three days for the engagement and assigned a full-time security
engineer to verify the security of the Fast Updates Go client. The security engineer is a penetration
testing expert with advanced knowledge in penetration testing, blockchain protocols, and source code
auditing.

The goals for this assessment are:

- Ensure that functions operate as intended.

- Identify potential security issues within the source code that may compromise or alter the functionality.

In summary, Halborn identified one low security issue that was successfully addressed by the Flare
Network team.

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance e�ciency,
timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is
recommended to uncover flaws in logic, process and implementation; automated testing techniques help
enhance coverage of the code and can quickly identify items that do not follow security best practices.

Several tests were carried out during the assessment; including, but not limited to:

- Manual code review and walkthrough

- Test for logical issues and misimplementations

- Manual testing by custom scripts

- Automated code auditing with SAST tool

The security assessment for the code review included automated tests, including static code analysis,
and vulnerability scanning with tools like Semgrep. Manual testing involved detailed code walkthroughs,
identifying security anti-patterns, and verifying the application of best practices and coding standards.
Execution tests were performed on the sections to evaluate runtime behavior, including input validation
checks, and secure data handling practices. The process also included evaluating the implementation of
security controls, and reviewing the code for common vulnerabilities.

4 . R I S K M E T H O D O L O GY

Vulnerabilities or issues observed by Halborn are ranked based on the risk assessment methodology by
measuring the LIKELIHOOD of a security incident and the IMPACT should an incident occur. This
framework works for communicating the characteristics and impacts of technology vulnerabilities. The
quantitative model ensures repeatable and accurate measurement while enabling users to see the
underlying vulnerability characteristics that were used to generate the Risk scores. For every
vulnerability, a risk level will be calculated on a scale of 5 to 1 with 5 being the highest likelihood or
impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.
4 - High probability of an incident occurring.
3 - Potential of a security incident in the long term.
2 - Low probability of an incident occurring.
1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.
4 - May cause a significant level of impact or loss.
3 - May cause a partial impact or loss to many.
2 - May cause temporary impact or loss.
1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating a value of 10 to 1 with 10
being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL
9 - 8 - HIGH
7 - 6 - MEDIUM
5 - 4 - LOW
3 - 1 - VERY LOW AND INFORMATIONAL

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: fast-updates

(b) Assessed Commit ID: e9e2fb4

(c) Items in scope:

sortition
updates
keygen

Out-of-Scope:

REMEDIAT ION COMMIT ID :

825c958825c958

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
0

HIGH
0

MEDIUM
0

LOW
1

INFORMATIONAL
0

I M PAC T X L I K E L I H O O D

HAL-01

https://gitlab.com/flarenetwork/fast-updates/-/tree/main/go-client

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

KEY FILE NOT ENCRYPTED LOW SOLVED

7. F I N D I N G S & T EC H D E TA I L S

7.1 K EY F I L E N OT E N C RY P T E D
// LOW

Description
Having sensitive files unencrypted on the disk poses significant security risks. Without encryption,
sensitive data such as personal information, financial records, and proprietary business documents can
be easily accessed by anyone who gains physical or remote access to the host. This includes malicious
actors, unauthorized employees, or anyone who finds or steals the device.

Proof of Concept
The source code file fast-updates/go-client/keygen/keygen.go provides an example Go implementation
for client to generate its own private / public key pair. In the following source code lines, the key JSON file
is being generated and stored in plain text in disk:

ifif **InFileFlag InFileFlag ==== """" &&&& **InFlag InFlag ==== """" {{
loggerlogger..InfoInfo(("No input specified, generating a new key pair.""No input specified, generating a new key pair."))
keyskeys,, err err == sortition sortition..KeyGenKeyGen(())
ifif err err !=!= nil nil {{

loglog..FatalFatal((errerr))
}}
keyStrings keyStrings ::== keyStrings keyStrings{{PrivateKeyPrivateKey:: "0x""0x" ++ keys keys..SkSk..TextText((1616)),, PublicK PublicK
keyByteskeyBytes,, err err ::== json json..MarshalMarshal((keyStringskeyStrings))
ifif err err !=!= nil nil {{

loglog..FatalFatal((errerr))
}}

ifif **KeyOutFlag KeyOutFlag ==== """" {{
loggerlogger..InfoInfo(("Key generated: ""Key generated: " ++ stringstring((keyByteskeyBytes))))

}} elseelse {{
ff,, err err ::== os os..CreateCreate((**KeyOutFlagKeyOutFlag))
ifif err err !=!= nil nil {{

loglog..FatalFatal((errerr))
}}

__,, err err == f f..WriteWrite((keyByteskeyBytes))
ifif err err !=!= nil nil {{

loglog..FatalFatal((errerr))
}}
err err == f f..CloseClose(())
ifif err err !=!= nil nil {{

loglog..FatalFatal((errerr))

4747
4848
4949
5050
5151
5252
5353
5454
5555
5656
5757
5858
5959
6060
6161
6262
6363
6464
6565
6666
6767
6868
6969
7070
7171
7272
7373
7474

Having the key file being stored unencrypted in the disk increases the possibility that a malicious actor
obtains its information by directly accessing the file, if previously access to the host containing the file
has been gained by other means.

Score

Impact: 2

Likelihood: 2

Recommendation
It is recommended to enforce the possibility of the output key file being encrypted using a password or
passphrase provided by the user prior to its writing on the disk. This way, before using the key file, the
file itself must be decrypted using this password, which guarantees that the public - private key
information in the file is not stored in plain text on the disk.

R e m e d i a t i o n P l a n

SOLVED: The Flare team fixed this finding by encrypting the private key with AES GCM and a password
provided by the user in the commit 825c95826db80ef2627a335754ad4e35326f0687.

Remediation Hash
825c95826db80ef2627a335754ad4e35326f0687

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

}}
loggerlogger..InfoInfo(("Saved key in file ""Saved key in file " ++ **KeyOutFlagKeyOutFlag))

}}

7474
7575
7676

