
Flare
rNat Contracts
Smart Contract Audit

© Coinspect 2024 1 / 15

rNat Contracts
Smart Contract Security Review

Version: v240701 Prepared for: Flare July, 2024

Security Assessment

1. Executive Summary
2. Summary of Findings

2.3 Solved issues & recommendations

3. Scope
4 Assessment

4.1 Security assumptions
4.2 Decentralization
4.3 Testing and Code quality

5. Detailed Findings
FLRN�001 � Incorrect withdrawal calculations when
rNat and WNat decimals don't match

© Coinspect 2024 2 / 15

FLRN�003 � Adversaries can take-over the
RNatAccount implementation
FLRN�005 � Withdraw function allows the owner to
pull all native token balance when zero amount is
specified

6. Disclaimer

© Coinspect 2024 3 / 15

1. Executive Summary
In June 2024, Flare engaged Coinspect to perform a source code review of the
reward token feature. The objective of the project was to evaluate the security of
the Solidity smart contracts that add a new rewarding mechanism based on a
yearly vesting schedule.

The RNat contract enables the claiming process and also serves as a non-
transferrable soulbound token. This new mechanism works in tandem with the
RNatAccount, a contract deployed for each reward recipient, in charge of storing
each recipient's rewards and performing vesting calculations.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
0

Medium
0

Medium
0

Low
1

Low
0

Low
0

No Risk
2

No Risk
0

No Risk
0

Total

3
Total

0
Total

0

https://coinspect.com/

© Coinspect 2024 4 / 15

2. Summary of Findings
�

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

FLRN�001 Incorrect withdrawal calculations when rNat and WNat
decimals don't match Low

FLRN�003 Adversaries can take-over the RNatAccount
implementation None

FLRN�005 Withdraw function allows the owner to pull all native
token balance when zero amount is specified None

© Coinspect 2024 5 / 15

3. Scope
The scope was set to be the repository at https://gitlab.com/flarenetwork/flare-
smart-contracts-v2/-/tree/rNat/contracts/rNat, branch origin/rNat at commit
62d3bcc8bfa47c7a492fa01285677170a24cead2.

https://gitlab.com/flarenetwork/flare-smart-contracts-v2/-/tree/rNat/contracts/rNat

© Coinspect 2024 6 / 15

4 Assessment
The RNat contracts provide a new rewarding flow on top of Flare existing ones
(e.g. via its main protocol through delegation rewards). This functionality is
provided by a set of two contracts, RNat and RNatAccount and allow users to
receive rewards released by a vesting mechanism.

This feature is implemented in a way that enables multiple whitelisted projects to
distribute rewards. Rewards are expressed in rNat, a soulbound non-transferrable
token. This token is backed by the same amount of wNat, which is only released
through the yearly vesting mechanism. Each project assigns the reward amount in
rNat on a monthly basis, as a consequence, each reward time-frame is unlocked in
a 1/12 fraction after each month. When a year passes all the rewards received on
that month are unlocked. Users can release the locked wNat after each month, if
there are unlocked tokens after that period. This claiming process burns the rNat
and transfers its backing wNat to the reward owner. As an alternative claiming
flow, reward owners can decide to get all their rNat tokens burned, at the expense
of losing half of their locked balance (penalty). All the tokens and vesting logic
are located in the RNatAccount contract, which is a clone of a library deployed
by the RNat for each reward recipient. External actors cannot modify its
implementation as RNat creates the clones from an existing contract set by the
manager, and then storing each contact's address.

One possible execution flow of this new feature works as follows. The RNat
manager specifies and adds one or many allowed projects into the RNat contract
and then sets the allowed amount of rNat to distribute by each project. Once
rewards are allocated at a project level, the privileged administrator of each
project (called distributor) specifies the amount of rewards for each user. Later,
reward recipients are allowed to claim their rNat only past or current months
(they not allowed to claim for future months). The rNat balance is allocated to
each recipient's RNatAccount. Also, the claiming process generates wNat balance
into the RNatAccount. However, this balance cannot be transferred out regularly,
as it is backing the rNat. After each month, recipients are allowed to get their
backing token (wNat) in a 1/12 fraction completing the vesting process after a
year.

4.1 Security assumptions

The project assumes that neither the manager nor any of the project's distributors
will act rogue. Also, malicious upgrades made to other protocol's contracts are
assumed to be prevented at a different access control layer.

© Coinspect 2024 7 / 15

Additionally, it is assumed that since WNat tokens are going to be vested, no
delegation rewards could be received by the balance locked into each
RNatAccount. Reward recipients will have to withdraw the WNat tokens from
each account and then perform the delegation by themselves, from outside the
account contract.

4.2 Decentralization

This project includes different layers of centralization. The manager is the most
over-powered role and is able to: update, create, enable/disable projects and
assign/unassign rewards. Then, each project's distributor is in charge of specifying
the rNat amount each recipient will receive for each month. Lastly, each recipient
is able to withdraw ERC20 tokens from their RNatAccount (besides WNat), claim
rewards and withdraw them.

Coinspect identified that actions performed by the manager that are non time-
sensitive could be put behind a timelock. In that case, time-locking those methods
that could be used as a countermeasure in the event of an adversarial scenario
(e.g. disable a claiming schedule for projects) must be avoided.

4.3 Testing and Code quality

Several tests for the new contracts were added to the repository, this allowed
Coinspect to quickly test new cases and scenarios. The code quality has high,
easy to read and understand. It includes NatSpec on its core functions easing the
process of understanding the functionality.

© Coinspect 2024 8 / 15

5. Detailed Findings

FLRN�001
Incorrect withdrawal calculations when
rNat and WNat decimals don't match

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Medium

Location

./contracts/rNat/implementation/RNatAccount.sol:104

./contracts/rNat/implementation/RNat.sol:123

Description

Each RNatAccount relies on the assumption that both the rNat and wNat
(backing, valuable token) have the same decimals. As a consequence,
withdrawal calculations can be disrupted if rNat and WNat tokens have
different decimal places.

© Coinspect 2024 9 / 15

This happens because many calculations assume both tokens have the same
number of decimals, such as WNat's 18 decimal places. When rNat has less
decimals than sWNat, the resulting calculations will be inaccurate, leading to
errors in the withdrawal process:

 uint128 rNatRewardsBalance = receivedRewards - withdrawnRewards;
 uint128 balance = uint128(_wNat.balanceOf(address(this)));
 assert(balance >= rNatRewardsBalance);
 uint256 locked = _lockedRewards(_firstMonthStartTs);
 require(balance - locked >= _amount, "insufficient balance");
 // withdraw RNat rewards last, only if needed
 _withdrawnRewards = balance - rNatRewardsBalance >= _amount ? 0 :
_amount - (balance - rNatRewardsBalance);
 withdrawnRewards += _withdrawnRewards;

Coinspect observed that the testing suite uses a random number (5) for the
rNat decimals, and the token's deployment has no way to ensure that its
decimals will match WNat's:

 constructor(
 IGovernanceSettings _governanceSettings,
 address _initialGovernance,
 address _addressUpdater,
 string memory _name,
 string memory _symbol,
 uint8 _decimals,
 address _manager,
 uint256 _firstMonthStartTs
)
 Governed(_governanceSettings, _initialGovernance)
IncentivePoolReceiver(_addressUpdater)
 {
 require(_firstMonthStartTs <= block.timestamp, "first month
start in the future");
 _checkNonzeroAddress(_manager);
 name = _name;
 symbol = _symbol;
 decimals = _decimals;
 manager = _manager;
 firstMonthStartTs = _firstMonthStartTs;
 }

 rNat = new RNat(
 IGovernanceSettings(makeAddr("governanceSettings")),
 governance,
 addressUpdater,
 "rTest",
 "rT",
 5,
 manager,
 500
);

© Coinspect 2024 10 / 15

As the expected flow of WNat into each account's contract is controlled by
the claiming process meaning that a 1�1 relationship is established, this issue is
considered to have low impact.

Recommendation

Since the decimals of the WNat token are already known, set the rNat
decimals as a constant and equal to WNat's.

Status

Fixed on commit 115a99beaf885ab2c03734656efd083f3ee0cc8e.

A deployment script for RNat was provided and its decimals are set directly
using wNat.decimals(). Additionally, Flare added a check to ensure that this
relationship matches when updating the contract addresses.

© Coinspect 2024 11 / 15

FLRN�003
Adversaries can take-over the
RNatAccount implementation

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

./contracts/rNat/implementation/RNatAccount.sol:56

Description

Each reward recipient receives a clone of the RNatAccount, which is a
minimal proxy with an isolated state that forwards calls to the account's
implementation. The proxy deployment atomically initializes every user's
account contract, preventing adversaries from taking-over each user's
account:

 // create RNat account
 _rNatAccount = IIRNatAccount(payable(createClone(libraryAddress)));
 require(_isContract(address(_rNatAccount)), "clone not created
successfully");
 _rNatAccount.initialize(msg.sender, this);

© Coinspect 2024 12 / 15

However, the deployment process of the implementation does not perform its
initialization, leaving the contract uninitialized thus allowing adversaries to
take this contract over:

 function initialize(
 address _owner,
 IRNat _rNat
)
 external
 {
 require(address(owner) == address(0), "owner already set");
 require(address(_owner) != address(0), "owner address zero");
 require(address(_rNat) != address(0), "rNat address zero");
 owner = _owner;
 rNat = _rNat;
 emit Initialized(owner, _rNat);
 }

Since this contract has no features that allow the owner to either destroy or
upgrade this implementation, this issue has no risk.

Recommendation

Disable the implementation's initialize function directly through its
constructor.

Status

Fixed on commit 115a99beaf885ab2c03734656efd083f3ee0cc8e.

A deployment script for rNatAccount was added where initialize() is called
atomically after its deployment, preventing the mentioned issue.

© Coinspect 2024 13 / 15

FLRN�005
Withdraw function allows the owner to pull
all native token balance when zero amount
is specified

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

./contracts/rNat/implementation/RNatAccount.sol:112

Description

Reward recipient owners can abuse from the withdraw method from their
RNatAccounts to drain all the Nat token balance. This happens because
native token transfers send all the contract's balance to the owner and zero
amount can be passed as a parameter when withdrawing rNat:

 if (!_wrap) {
 disableAutoWrapping = true;
 _wNat.withdraw(_amount);
 disableAutoWrapping = false;
 _transferCurrentBalanceToOwner();

Then, _transferCurrentBalanceToOwner():

© Coinspect 2024 14 / 15

function _transferCurrentBalanceToOwner() internal {
 uint256 balance = address(this).balance;
 if (balance > 0) {
 /* solhint-disable avoid-low-level-calls */
 //slither-disable-next-line arbitrary-send-eth
 (bool success,) = owner.call{value: balance}("");
 /* solhint-enable avoid-low-level-calls */
 require(success, ERR_TRANSFER_FAILURE);
 }
}

Although RNat accounts are expected to have WNat balance instead, this
alternative path allows owners to withdraw the contract's native balance and
also make arbitrary calls. The latter, could be abused to trigger reentrant calls
at a zero cost to any contract if the owner is a contract that implements
malicious logic into their receive/fallback functions.

Recommendation

Revert withdrawals that set zero as the amount. Alternatively, document this
potential adversarial scenario if this path is intended.

Status

Acknowledged.

The Flare Team added a comment to relevant functions clarifying the usage of
the withdraw function and this alternative path.

© Coinspect 2024 15 / 15

6. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover out of scope systems, nor the
general operational security of the organization that developed the code.

