
Flare

Voter Registry Fix
Security Review

© Coinspect 2024 1 / 25

Voter Registry Fix
Smart Contract Security Review

Version: v240603 Prepared for: Flare June 2024

Security Assessment

1. Executive Summary

2. Summary of Findings

2.3 Solved issues & recommendations

3. Scope

4. Assessment

4.1 Fix review

4.2 Consumers of the Entity Manager

4.3 Additional recommendations

5. Detailed Findings

© Coinspect 2024 2 / 25

FSC-19 - Attackers can register as voters twice using the
voting power of the same account

6. Disclaimer

© Coinspect 2024 3 / 25

1. Executive Summary

In May 2024, Flare engaged Coinspect to review a fix for a vulnerability in a contract in
the Smart Contracts v2 repositories. The objective of the project was to evaluate the
effectiveness of the fix for a faulty interaction between the protocol's Entity Manager
and Voter Registry.

Solved Caution Advised Resolution Pending

High

1
High

0
High

0

Medium

0
Medium

0
Medium

0

Low

0
Low

0
Low

0

No Risk

0
No Risk

0
No Risk

0

Total

1
Total

0
Total

0

https://www.coinspect.com/

© Coinspect 2024 4 / 25

2. Summary of Findings

© Coinspect 2024 5 / 25

2.3 Solved issues & recommendations

This section outlines issues that have been fully resolved and offers recommendations
aimed at enhancing the project's long-term security.

Id Title Risk

FSC-19 Attackers can register as voters twice using the voting power
of the same account High

© Coinspect 2024 6 / 25

3. Scope

The scope was limited to the Flare Smart Contracts V2 repository, branch
voter_registry_fix at commit 3d0b301cbd689fb97217fa1d821e7dcd7a491727.

https://gitlab.com/flarenetwork/flare-smart-contracts-v2

© Coinspect 2024 7 / 25

4. Assessment

This report's objective is to analyze an issue identified by the Flare Team when
calculating rewards distribution on Flare's Coston Testnet, and to confirm the
effectiveness of the proposed fix.

This issue allowed attackers to register two different accounts as voters in the Voter
Registry, while counting the voting power of the same entity. As a consequence, voting
power was effectively doubled.

4.1 Fix review

The proposed remediation adds checks to the Voter Registry to stop execution if the
Entity Manager return value matches the passed parameter. This change effectively
stops the identified exploit. Although modifying the Entity Manager would be the
definitive solution, the Flare Team opted for this more straightforward approach that
still provides adequate protection.

After developing a working proof-of-concept exploit for the vulnerability being
analyzed (see FSC-19 below), Coinspect concluded the proposed fix stops the
identified exploit.

4.2 Consumers of the Entity Manager

Coinspect confirmed that the proposed fix protects against the specific issue described
on this report. However, it is imperative to consider that since the Entity Manager itself
will not be fixed, and its getters still return default addresses, new implementations
consuming its data could be vulnerable to the same pattern and should always check
that:

no calls land in the default-branch of the getters that return the functions
parameters.
all entities to query should have been set previously to an address different from
the delegation address (or any other address type that adversaries could make it
appear as duplicate).

© Coinspect 2024 8 / 25

Coinspect team reviewed the following Entity Manager getters checking their
consumers:

1. getDelegationAddressOfAt()

FlareSystemsCalculator.calculateRegistrationWeight():

This function is permissioned and can only be called by the Voter Registry. The fix adds
checks before making the call in the context of the Voter Registry contract. However, it
should be considered that in the event of changing the FlareSystemsCalculator
permissions structure or implementation, functions relying on direct calls to the Entity
Manager could turn exploitable:

 require(entityManager.getDelegationAddressOfAt(_voter,
votePowerBlock) != _voter,
 "delegation address not set");

2. getDelegationAddressOf()

No calls are made to this function within the system. However, future implementations
relying on this function will need to check for non-default scenarios.

3. getVoterAddressesAt()

VoterRegistry._getRegistrationData():

This internal function is called at the beginning of the registration process. The fix adds
checks to ensure that no default behavior from the Entity Manager is triggered:

 require(_voterAddresses.signingPolicyAddress != _voter, "signing
policy address not set");
 require(_voterAddresses.submitAddress != _voter, "submit address
not set");
 require(_voterAddresses.submitSignaturesAddress != _voter, "submit
signatures address not set");

4. getVoterAddresses()

© Coinspect 2024 9 / 25

No calls are made to this function within the system. However, future implementations
relying on this function will need to check for non-default scenarios.

5. getDelegationAddresses()

VoterRegistry.getRegisteredDelegationAddresses():

This external view function returns all the delegation addresses for the registered
voters. No checks were added as part of the fixes. This function consumes from the
already registered voters in storage to retrieve their delegation addresses. Since the
registration process was patched, no duplicates could exist. Additionally, no calls are
made to this function within the system.

6. getSubmitAddresses()

VoterRegistry.getRegisteredSubmitAddresses():

Same analysis as 5.

7. getSubmitSignaturesAddresses()

VoterRegistry.getRegisteredSubmitSignaturesAddresses():

Same analysis as 5.

8. getSigningPolicyAddresses()

VoterRegistry.getRegisteredSigningPolicyAddresses():

Same analysis as 5.

VoterRegistry.createSigningPolicySnapshot():

This function is called once per epoch by the System Manager to get the registered
voters and their weights. The query to the Entity Manager is made using the voters
from the contract's storage. Since the voter registration process was fixed, no
duplicates could exist.

© Coinspect 2024 10 / 25

9. getPublicKeys()

VoterRegistry.getRegisteredPublicKeys():

Same analysis as 5.

VoterRegistry.createSigningPolicySnapshot():

Same analysis as 8 with the additional caveat that the registration process checks for
non-zero public key parts.

10. getVoterForDelegationAddress()

No calls are made to this function within the system. However, future implementations
relying on this function will need to check for non-default scenarios.

11. getVoterForSubmitAddress()

No calls are made to this function within the system. However, future implementations
relying on this function will need to check for non-default scenarios.

12. getVoterForSubmitSignaturesAddress()

No calls are made to this function within the system. However, future implementations
relying on this function will need to check for non-default scenarios.

13. getVoterForSigningPolicyAddress()

VoterRegistry.getVoterWithNormalisedWeight() and
VoterRegistry.getPublicKeyAndNormalisedWeight():

These external view functions are consulted from other sources to retrieve the voter
along with its data (keys, address, weight, etc). The fix proposed by Flare prevents
getting default results from the Entity Manager (this is also checked upon voter
registration):

require(voter != _signingPolicyAddress, "invalid signing policy address");

© Coinspect 2024 11 / 25

4.3 Additional recommendations

Coinspect strongly recommends that integration tests are developed for every critical
contract before deployment. It is important to rely as little as possible on mock calls
and mock contracts in the testing framework. This would increase the likelihood of
finding vulnerabilities that depend on the interaction between different components
during the development phase.

© Coinspect 2024 12 / 25

5. Detailed Findings

FSC-19

Attackers can register as voters twice using
the voting power of the same account

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

contracts/protocol/implementation/VoterRegistry.sol

contracts/protocol/implementation/EntityManager.sol

contracts/protocol/implementation/FlareSystemsCalculator.sol

Description

Attackers can abuse a bug in Entity Manager to exploit the voter registration
process by registering two different voters that use the same delegation address'

© Coinspect 2024 13 / 25

voting power.

The Entity Manager has multiple getters for each registered address. The
registration mechanism is based on a propose-accept process where an account
proposes a delegation address and then, that delegation address confirms the
voter:

 /**
 * @inheritdoc IEntityManager
 */
 function proposeDelegationAddress(address _delegationAddress)
external {

require(delegationAddressRegistered[_delegationAddress].addressAtNow()
== address(0),
 "delegation address already registered");
 delegationAddressRegistrationQueue[msg.sender] =
_delegationAddress;
 emit DelegationAddressProposed(msg.sender, _delegationAddress);
 }

 /**
 * @inheritdoc IEntityManager
 */
 function confirmDelegationAddressRegistration(address _voter)
external {
 require(delegationAddressRegistered[msg.sender].addressAtNow()
== address(0),
 "delegation address already registered");
 require(delegationAddressRegistrationQueue[_voter] ==
msg.sender,
 "delegation address not in registration queue");
 address oldDelegationAddress =
register[_voter].delegationAddress.addressAtNow();
 if (oldDelegationAddress != address(0)) {

delegationAddressRegistered[oldDelegationAddress].setAddress(address(0)
);
 }
 register[_voter].delegationAddress.setAddress(msg.sender);
 delegationAddressRegistered[msg.sender].setAddress(_voter);
 delete delegationAddressRegistrationQueue[_voter];
 emit DelegationAddressRegistrationConfirmed(_voter,
msg.sender);
 }

Then, a delegation address is queried using getDelegationAddressOfAt():

 function getDelegationAddressOfAt(
 address _voter,
 uint256 _blockNumber
)
 external view
 returns(address _delegationAddress)
 {
 _delegationAddress =

© Coinspect 2024 14 / 25

register[_voter].delegationAddress.addressAt(_blockNumber);
 if (_delegationAddress == address(0)) {
 _delegationAddress = _voter;
 }
 }

The first part of this issue relies on the fact that the getter returns
_delegationAddress as the function's call parameter, _voter, when no registries
for that _voter are found in the register mapping. This means that an external
source could receive the same return for two different calls:

getDelegationAddressOfAt(_VoterThatRegisteredSomeDelegationAddress,
someBlock) ===> _registeredDelegationAddress (non-default path, storage
found)
getDelegationAddressOfAt(_registeredDelegationAddress, someBlock) ===>
_registeredDelegationAddress (default path, storage not found)

Other getters from the Entity Manager have this same default behavior.

Moreover, since the VoterRegistry calculates the voting power of the delegation
account upon registration, it means that two different accounts could register
themselves as voters using the same voting power:

 function _registerVoter(
 address _voter,
 uint24 _rewardEpochId,
 IIEntityManager.VoterAddresses memory _voterAddresses
)
 internal
 {
 (uint256 votePowerBlock, bool enabled) =
flareSystemsManager.getVoterRegistrationData(_rewardEpochId);
 require(votePowerBlock != 0, "vote power block zero");
 require(enabled, "voter registration not enabled");
 uint256 weight =
flareSystemsCalculator.calculateRegistrationWeight(_voter,
_rewardEpochId, votePowerBlock);
 require(weight > 0, "voter weight zero");

 {...}
 }

In flareSystemsCalculator.calculateRegistrationWeight():

 address delegationAddress =
entityManager.getDelegationAddressOfAt(_voter, _votePowerBlockNumber);
 if (_rewardEpochId >=
voterRegistry.chilledUntilRewardEpochId(bytes20(delegationAddress))) {
 uint256 totalWNatVotePower =
wNat.totalVotePowerAt(_votePowerBlockNumber);
 uint256 wNatWeightCap = (totalWNatVotePower * wNatCapPPM) /
PPM_MAX; // no overflow possible

© Coinspect 2024 15 / 25

 wNatWeight = wNat.votePowerOfAt(delegationAddress,
_votePowerBlockNumber);
 wNatCappedWeight = Math.min(wNatWeightCap, wNatWeight);
 _registrationWeight += wNatCappedWeight;
 }

Imagine that an attacker controls two accounts: delegationAccountA (holds voting
power), voterA. Then, using voterA proposes delegationAccountA in the Entity
Manager and confirms this using delegationAccountA. Afterwards, registers both
delegationAcdelegationAccountAcount and voterA as voters in the context of the
VoterRegistry. Since both accounts are different, all checks that verify whether the
voter was registered pass. However, when calculating the voting power in the
systems calculator upon voter registration the following happens:

Registration of voterA as voter:

address delegationAddress =
entityManager.getDelegationAddressOfAt(voterA, _votePowerBlockNumber)
=> delegationAccountA (query returning registered value)

Registration of delegationAccountA as voter:

address delegationAddress =
entityManager.getDelegationAddressOfAt(delegationAccountA,
_votePowerBlockNumber) => delegationAccountA (query returning default value,
call parameter, storage not found)

Through this process, attackers are able to register two different voters
consuming the voting power of a single account.

Recommendation

Remove the default returns from all the view methods in the Entity Manager.
Alternatively, add checks in the voter registration and voting power querying
mechanisms to disable default returns from the Entity Manager.

Status

Fixed on commit f48380c3fc3c7e4cc68568806ba154f5faaf830d of the
voter_registry_fix branch.

Checks to ensure that the VoterRegistry does not rely on the default returns of
the Entity Manager were added, for example:

© Coinspect 2024 16 / 25

 require(entityManager.getDelegationAddressOfAt(_voter,
votePowerBlock) != _voter,
 "delegation address not set");

Through these checks, the system forces voters to set a specific delegation
address different from themselves to prevent default-behavior.

Proof of Concept

The following test shows how two different voters are able to get the voting
power of the same entity (delegation address). This is done by abusing the default
behavior of the EntityManager that returns the call's parameter when no registries
are found in its relevant mapping. This allows a voterA and the delegationAccount
to be independent voters getting the same voting power of the
delegationAccount.

The test was made in foundry, deploying instances of the Entity Manager, Voter
Registry and System Calculator. Non relevant calls are mocked.

First, the voterA sets in the Entity Manager the delegationAccount as their
delegation address. Then, both the delegationAccount and voterA register
themselves as voters. For the first account, it enters in default behavior of the
Entity Manager returning the same address. For the last account, voterA, the
delegation address is returned since the delegationAccount was set. Through this
process, both users are able to register themselves as voters consuming the
voting power from the same account.

Run this script at the project's commit
326e265f31f3c88ca4b01a1e16e71921be28650a, before the fix was made. Coinspect
re-ran this proof of concept in the fix branch and it reverts, showing that
adversaries cannot register two voters pointing to the same delegation address
after the fix was made.

function testCoinspectVWIssue() public {
 // Global task: register two voters pointing to the same
delegation address
 (address voterA, uint256 pkA) = makeAddrAndKey("voterA");
 (address delegationAddress, uint256 pkD) =
makeAddrAndKey("delegation"); // would act also as a voter

 // Point both voters to the same delegation
 vm.prank(voterA);
 entityManager.proposeDelegationAddress(delegationAddress);

 vm.prank(delegationAddress);
 entityManager.confirmDelegationAddressRegistration(voterA);

© Coinspect 2024 17 / 25

 assertEq(entityManager.getDelegationAddressOfAt(voterA,
block.number), delegationAddress);

 // Simulate voter addresses (relevant just for signature
validation)
 // Last parameter should match with voter address
 _mockGetVoterAddressesAt(
 voterA,
 IEntityManager.VoterAddresses(
 makeAddr(string.concat("submitAddress1")),
makeAddr(string.concat("submitSignaturesAddress1")), voterA
)
);

 _mockGetVoterAddressesAt(
 delegationAddress,
 IEntityManager.VoterAddresses(
 makeAddr(string.concat("submitAddress2")),
 makeAddr(string.concat("submitSignaturesAddress2")),
 delegationAddress
)
);

 // Move to block 10
 vm.roll(10);

 uint24 rewardEpochId = 0;
 uint256 votePowerBlockNumber = block.number;

 // Simulate that the vote power block is enabled and current
epoch
 _mockGetVoterRegistrationData(votePowerBlockNumber, true);
 _mockGetCurrentEpochId(0);

 // Simulate that no nodeIds are registered for any account
 bytes20[] memory _nodeIds = new bytes20[](0);
 _mockGetNodeIdsAt(voterA, votePowerBlockNumber, _nodeIds);
 _mockGetNodeIdsAt(delegationAddress, votePowerBlockNumber,
_nodeIds);

 IIEntityManager calcEntManager = calculator.entityManager();
 calcEntManager.getNodeIdsOfAt(voterA, votePowerBlockNumber);

 // Simulate that no account is chilled
 _mockChilledUntilRewardEpochId(bytes20(delegationAddress), 0);

 // Simulate totalVotePower and delegation voting power
 _mockWnatVotePowerAt(votePowerBlockNumber);
 _mockVotePowerOfAt(delegationAddress, votePowerBlockNumber);

 // Simulate delegation fee
 _mockWnatDelegationFee(voterA, rewardEpochId + 1);
 _mockWnatDelegationFee(delegationAddress, rewardEpochId + 1);

 // Simulate that public keys are registered for both voters
 _mockGetPublicKeyOfAt(voterA, "voter", "A");
 _mockGetPublicKeyOfAt(delegationAddress, "delegation",
"Address");

 // Simulate that the system manager allows 2 voters

© Coinspect 2024 18 / 25

 _mockSigningPolicyMinNumberOfVoters(2);

 vm.prank(governance);
 voterRegistry.setMaxVoters(2);
 vm.prank(mockFlareSystemsManager);

voterRegistry.setNewSigningPolicyInitializationStartBlockNumber(1);

 // Get the registration weight value calculated for the
delegation address
 vm.prank(address(voterRegistry));
 uint256 calcVotingWeightForDelegationAddr =
 calculator.calculateRegistrationWeight(delegationAddress,
rewardEpochId + 1, votePowerBlockNumber);

 IVoterRegistry.Signature memory signature;
 signature = _createSigningPolicyAddressSignature(voterA, pkA,
rewardEpochId + 1);
 vm.expectEmit();
 emit VoterRegistered(
 voterA,
 rewardEpochId + 1,
 voterA,
 makeAddr(string.concat("submitAddress1")),
 makeAddr(string.concat("submitSignaturesAddress1")),
 keccak256(abi.encode("voter")),
 keccak256(abi.encode("A")),
 calcVotingWeightForDelegationAddr
);
 voterRegistry.registerVoter(voterA, signature);

 signature =
_createSigningPolicyAddressSignature(delegationAddress, pkD,
rewardEpochId + 1);
 vm.expectEmit();
 emit VoterRegistered(
 delegationAddress,
 rewardEpochId + 1,
 delegationAddress,
 makeAddr(string.concat("submitAddress2")),
 makeAddr(string.concat("submitSignaturesAddress2")),
 keccak256(abi.encode("delegation")),
 keccak256(abi.encode("Address")),
 calcVotingWeightForDelegationAddr
);
 voterRegistry.registerVoter(delegationAddress, signature);
 }

Test environment setup

The test function should be placed in the following contract located at test-
forge/unit/protocol/implementation/:

© Coinspect 2024 19 / 25

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import "forge-std/Test.sol";
import "forge-std/console.sol";
import
"../../../../contracts/protocol/implementation/VoterRegistry.sol";
import
"../../../../contracts/protocol/implementation/EntityManager.sol";
import
"../../../../contracts/protocol/implementation/FlareSystemsCalculator.s
ol";

import "../../../mock/MockNodePossessionVerification.sol";
import "../../../mock/MockPublicKeyVerification.sol";

contract RegistrationIssueTest is Test {
 EntityManager private entityManager;
 VoterRegistry private voterRegistry;
 FlareSystemsCalculator private calculator;

 address private addressUpdater;

 address private governance;
 address private governanceSettings;

 MockPublicKeyVerification private mockPublicKeyVerification;
 address private mockFlareSystemsManager;
 address private mockFlareSystemsCalculator;

 address[] private initialVoters;
 uint256[] private initialVotersSigningPolicyPk; // private keys
 uint16[] private initialNormWeights;
 bytes32[] private contractNameHashes;
 address[] private contractAddresses;
 address[] private initialDelegationAddresses;
 address[] private initialSubmitAddresses;
 address[] private initialSubmitSignaturesAddresses;
 address[] private initialSigningPolicyAddresses;
 bytes32[] private initialPublicKeyParts1;
 bytes32[] private initialPublicKeyParts2;
 bytes20[][] private initialNodeIds;
 IEntityManager.VoterAddresses[] private
initialVotersRegisteredAddresses;
 uint256[] private initialVotersWeights;
 uint256 private pChainTotalVP;
 uint256 private cChainTotalVP;
 uint256 private wNatTotalVP;

 uint256 private constant UINT16_MAX = type(uint16).max;

 uint24 internal constant WNAT_CAP = 10000;
 uint256 internal constant TOTAL_WNAT_VOTE_POWER = 1e7;
 uint16 internal constant DELEGATION_FEE_BIPS = 15;
 uint256 internal constant WNAT_WEIGHT = 2e5;

 event VoterRegistered(
 address indexed voter,
 uint24 indexed rewardEpochId,
 address indexed signingPolicyAddress,

© Coinspect 2024 20 / 25

 address submitAddress,
 address submitSignaturesAddress,
 bytes32 publicKeyPart1,
 bytes32 publicKeyPart2,
 uint256 registrationWeight
);

 function setUp() public {
 governance = makeAddr("governance");
 governanceSettings = makeAddr("governanceSettings");
 addressUpdater = makeAddr("addressUpdater");

 entityManager = new
EntityManager(IGovernanceSettings(governanceSettings), governance, 4);
 mockPublicKeyVerification = new MockPublicKeyVerification();
 vm.prank(governance);
 entityManager.setPublicKeyVerifier(mockPublicKeyVerification);

 vm.prank(governance);

entityManager.setNodePossessionVerifier(IINodePossessionVerifier(makeAd
dr("nodePossessionVerifier")));
 vm.mockCall(
 makeAddr("nodePossessionVerifier"),

abi.encodeWithSelector(IINodePossessionVerifier.verifyNodePossession.se
lector),
 abi.encode()
);

 // Voter Registry deployment
 _createInitialVoters(2);

 voterRegistry = new VoterRegistry(
 IGovernanceSettings(governanceSettings), governance,
addressUpdater, 4, 0, initialVoters, initialNormWeights
);

 calculator = new FlareSystemsCalculator(
 IGovernanceSettings(governanceSettings), governance,
addressUpdater, WNAT_CAP, 20 * 60, 600, 600
);

 //// update contract addresses
 mockFlareSystemsManager = makeAddr("flareSystemsManager");
 mockFlareSystemsCalculator =
makeAddr("flareSystemsCalculator");
 vm.startPrank(addressUpdater);
 contractNameHashes = new bytes32[](4);
 contractAddresses = new address[](4);
 contractNameHashes[0] = _keccak256AbiEncode("AddressUpdater");
 contractNameHashes[1] =
_keccak256AbiEncode("FlareSystemsManager");
 contractNameHashes[2] = _keccak256AbiEncode("EntityManager");
 contractNameHashes[3] =
_keccak256AbiEncode("FlareSystemsCalculator");
 contractAddresses[0] = addressUpdater;
 contractAddresses[1] = mockFlareSystemsManager;
 contractAddresses[2] = address(entityManager);
 contractAddresses[3] = address(calculator);

© Coinspect 2024 21 / 25

 voterRegistry.updateContractAddresses(contractNameHashes,
contractAddresses);
 vm.stopPrank();

 bytes32[] memory contractNameHashesCalc = new bytes32[](6);
 contractNameHashesCalc[0] =
_keccak256AbiEncode("EntityManager");
 contractNameHashesCalc[1] =
_keccak256AbiEncode("WNatDelegationFee");
 contractNameHashesCalc[2] =
_keccak256AbiEncode("VoterRegistry");
 contractNameHashesCalc[3] = _keccak256AbiEncode("WNat");
 contractNameHashesCalc[4] =
_keccak256AbiEncode("AddressUpdater");
 contractNameHashesCalc[5] =
_keccak256AbiEncode("FlareSystemsManager");

 address[] memory contractAddressesCalc = new address[](6);
 contractAddressesCalc[0] = address(entityManager);
 contractAddressesCalc[1] = makeAddr("WNatDelegationFee");
 contractAddressesCalc[2] = address(voterRegistry);
 contractAddressesCalc[3] = makeAddr("WNat");
 contractAddressesCalc[4] = addressUpdater;
 contractAddressesCalc[5] = makeAddr("FlareSystemsManager");

 vm.prank(addressUpdater);
 calculator.updateContractAddresses(contractNameHashesCalc,
contractAddressesCalc);
 }

 function testCoinspectVWIssue() public {
 // Global task: register two voters pointing to the same
delegation address
 }

 function _createInitialVoters(uint256 _num) internal {
 for (uint256 i = 0; i < _num; i++) {
 initialVoters.push(makeAddr(string.concat("initialVoter",
vm.toString(i))));
 initialNormWeights.push(uint16(UINT16_MAX / _num));

initialDelegationAddresses.push(makeAddr(string.concat("delegationAddre
ss", vm.toString(i))));

initialSubmitAddresses.push(makeAddr(string.concat("submitAddress",
vm.toString(i))));

initialSubmitSignaturesAddresses.push(makeAddr(string.concat("submitSig
naturesAddress", vm.toString(i))));

 (address addr, uint256 pk) =
makeAddrAndKey(string.concat("signingPolicyAddress", vm.toString(i)));
 initialSigningPolicyAddresses.push(addr);
 initialVotersSigningPolicyPk.push(pk);

 // registered addresses
 initialVotersRegisteredAddresses.push(
 IEntityManager.VoterAddresses(
 initialSubmitAddresses[i],

© Coinspect 2024 22 / 25

initialSubmitSignaturesAddresses[i], initialSigningPolicyAddresses[i]
)
);

 // weights
 initialVotersWeights.push(100 * (i + 1));

 // public keys
 if (i == 0) {

initialPublicKeyParts1.push(keccak256(abi.encode("publicKey1")));

initialPublicKeyParts2.push(keccak256(abi.encode("publicKey2")));
 } else {
 initialPublicKeyParts1.push(bytes32(0));
 initialPublicKeyParts2.push(bytes32(0));
 }

 initialNodeIds.push(new bytes20[](i));
 for (uint256 j = 0; j < i; j++) {
 initialNodeIds[i][j] =
bytes20(bytes(string.concat("nodeId", vm.toString(i),
vm.toString(j))));
 }
 }
 }

 function _keccak256AbiEncode(string memory _value) internal pure
returns (bytes32) {
 return keccak256(abi.encode(_value));
 }

 function _mockGetCurrentEpochId(uint256 _epochId) internal {
 vm.mockCall(
 mockFlareSystemsManager,

abi.encodeWithSelector(IFlareSystemsManager.getCurrentRewardEpochId.sel
ector),
 abi.encode(_epochId)
);
 }

 function _mockGetVoterRegistrationData(uint256 _vpBlock, bool
_enabled) internal {
 vm.mockCall(
 mockFlareSystemsManager,

abi.encodeWithSelector(IFlareSystemsManager.getVoterRegistrationData.se
lector),
 abi.encode(_vpBlock, _enabled)
);
 }

 function _mockSigningPolicyMinNumberOfVoters(uint256
_signingPolicyMinNumberOfVoters) internal {
 vm.mockCall(
 mockFlareSystemsManager,

abi.encodeWithSelector(IIFlareSystemsManager.signingPolicyMinNumberOfVo
ters.selector),

© Coinspect 2024 23 / 25

 abi.encode(_signingPolicyMinNumberOfVoters)
);
 }

 function _mockChilledUntilRewardEpochId(bytes20 _delegationAddress,
uint256 until) internal {
 vm.mockCall(
 address(calculator.voterRegistry()),

abi.encodeWithSelector(IVoterRegistry.chilledUntilRewardEpochId.selecto
r, bytes20(_delegationAddress)),
 abi.encode(until)
);
 }

 function _mockWnatVotePowerAt(uint256 _block) internal {
 vm.mockCall(
 address(calculator.wNat()),

abi.encodeWithSelector(bytes4(keccak256("totalVotePowerAt(uint256)")),
_block),
 abi.encode(TOTAL_WNAT_VOTE_POWER)
);
 }

 function _mockWnatDelegationFee(address voter, uint256
rewardEpochId) internal {
 vm.mockCall(
 address(calculator.wNatDelegationFee()),

abi.encodeWithSelector(IWNatDelegationFee.getVoterFeePercentage.selecto
r, voter, rewardEpochId),
 abi.encode(DELEGATION_FEE_BIPS)
);
 }

 function _mockGetPublicKeyOfAt(address _voter, string memory
_part1, string memory _part2) internal {
 vm.mockCall(
 address(entityManager),

abi.encodeWithSelector(IEntityManager.getPublicKeyOfAt.selector,
_voter),
 abi.encode(keccak256(abi.encode(_part1)),
keccak256(abi.encode(_part2)))
);
 }

 function _mockGetVoterAddressesAt(address voter,
IEntityManager.VoterAddresses memory voterAddresses) internal {
 for (uint256 i = 0; i < initialVoters.length; i++) {
 vm.mockCall(
 address(entityManager),

abi.encodeWithSelector(IEntityManager.getVoterAddressesAt.selector,
voter),
 abi.encode(voterAddresses)
);
 }
 }

© Coinspect 2024 24 / 25

 function _mockGetNodeIdsAt(address voter, uint256
_votePowerBlockNumber, bytes20[] memory _nodeIds) internal {
 vm.mockCall(
 address(calculator.entityManager()),

abi.encodeWithSelector(IEntityManager.getNodeIdsOfAt.selector, voter,
_votePowerBlockNumber),
 abi.encode(_nodeIds)
);
 }

 function _mockVotePowerOfAt(address voter, uint256 votePowerBlock)
internal {
 vm.mockCall(
 address(calculator.wNat()),

abi.encodeWithSelector(bytes4(keccak256("votePowerOfAt(address,uint256)
")), voter, votePowerBlock),
 abi.encode(WNAT_WEIGHT)
);
 }

 function _createSigningPolicyAddressSignature(address voter,
uint256 pk, uint256 _nextRewardEpochId)
 internal
 returns (IVoterRegistry.Signature memory _signature)
 {
 bytes32 messageHash = keccak256(abi.encode(_nextRewardEpochId,
voter));
 bytes32 signedMessageHash =
MessageHashUtils.toEthSignedMessageHash(messageHash);
 (uint8 v, bytes32 r, bytes32 s) = vm.sign(pk,
signedMessageHash);
 _signature = IVoterRegistry.Signature(v, r, s);
 }
}

© Coinspect 2024 25 / 25

6. Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover out of scope systems, nor the general
operational security of the organization that developed the code.

