

© Coinspect 2025 1 / 40

FAsset V1.1 Core Vault
Smart Contract Audit

Version: v250506 Prepared for: Flare April 2025

Security Assessment

1. Executive Summary
2. Summary of Findings

2.2 Finding where caution is advised
2.3 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Core Vault Analysis
4.2 Security assumptions
4.3 Decentralization Analysis

5. Detailed Findings

© Coinspect 2025 2 / 40

FAS�049 � Agents risk paying confirmation rewards
due to CoreVault downtime
FAS�050 � Agents can mistakenly overpay fees
FAS�051 � Violation of checks-effects-interaction
pattern
FAS�052 � Unbounded loop when processing
requests could deny executing core vault operations
FAS�053 � Users are unprotected against missing or
malformed vault redemption payments
FAS�054 � Core vault transfers force agents to get
close to insolvency
FAS�055 � Escrows finalized close to expiry time
decouple the Core Vault internal accountancy
FAS�056 � Large redemptions from core vault can be
denied by smaller ones
FAS�057 � Array of escrows always grows
FASO�045 � Partially hardcoded API response can
trigger wrong actions
FASO�046 � Replacement transactions might not go
through due to insufficient funds
FASO�047 � Wrong notifier event

6. Disclaimer

© Coinspect 2025 3 / 40

1. Executive Summary
In March, 2025, Flare engaged Coinspect to perform a Smart Contract Audit of
FAsset V1.1 Core Vault. The objective of the project was to evaluate the security of
the smart contracts and off-chain services that support the Core Vault feature.

Core Vault provides a centralized liquidity reserve in the FAsset system, allowing
agents to unlock collateral by depositing underlying Fassets. It improves
scalability and stability by easing collateral constraints and supporting large-value
user redemptions.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
0

Medium
3

Medium
0

Low
3

Low
0

Low
0

No Risk
6

No Risk
0

No Risk
0

Total

9
Total

3
Total

0

In this security assessment Coinspect identified issues related to the following
topics:

Maximum transfer to vault limits and how it affects the overall protocol's
health
Escrow management and creation process
Different paths and mechanisms that could temporarily or permanently halt the
vault operations

https://flare.network/
https://coinspect.com/

© Coinspect 2025 4 / 40

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.2 Finding where caution is advised

Issues with risk in this list have been addressed to some extent but not fully
mitigated. Any future changes to the codebase should be carefully evaluated to
avoid exacerbating these issues or increasing their probability.

Findings with a risk of None pose no threat, but document an implicit assumption
which must be taken into account. Once acknowledged, these are considered
solved.

Id Title Risk

FAS�053 Users are unprotected against missing or malformed
vault redemption payments Medium

FAS�055 Escrows finalized close to expiry time decouple the
Core Vault internal accountancy Medium

FAS�056 Large redemptions from core vault can be denied by
smaller ones Medium

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

FAS�049 Agents risk paying confirmation rewards due to
CoreVault downtime Low

© Coinspect 2025 5 / 40

FAS�050 Agents can mistakenly overpay fees Low

FASO�045 Partially hardcoded API response can trigger wrong
actions Low

FAS�051 Violation of checks-effects-interaction pattern None

FAS�052 Unbounded loop when processing requests could deny
executing core vault operations None

FAS�054 Core vault transfers force agents to get close to
insolvency None

FAS�057 Array of escrows always grows None

FASO�046 Replacement transactions might not go through due to
insufficient funds None

FASO�047 Wrong notifier event None

© Coinspect 2025 6 / 40

3. Scope
The scope was set to be:

The branch fasset-core-vault-audit at repository
https://gitlab.com/flarenetwork/fasset at commit
2d3ac4e2a93033aa6585b8dc9965a01f1ac79f4c.

The repository https://gitlab.com/flarenetwork/fassets/fasset-bots at commit
1520e50a565f965d6dc810afb41359c40179110e

https://gitlab.com/flarenetwork/fasset
https://gitlab.com/flarenetwork/fassets/fasset-bots

© Coinspect 2025 7 / 40

4. Assessment
The Core Vault is a new liquidity management component in the FAssets v1.1
protocol, introduced to alleviate collateral bottlenecks and improve agent
profitability. It is implemented as a multi-signature-controlled address on the XRP
Ledger, designed to securely hold and manage underlying assets (e.g., XRP� that
back fXRP minted on Flare. Hence, the implementation reviewed only supports the
XRP chain.

The Core Vault limits risk with a strict release schedule: agent withdrawals, user
redemptions, and escrow operations are authorized only once per day within a
fixed signing window. Time-locked escrows minimize fund exposure and protect
against signer compromise.

Funds held in the vault are used to facilitate two main services:

Unlocking or re-balancing agent collateral on Flare when agents deposit or
withdraw underlying assets.
Servicing large user redemptions directly, bypassing the need to find an
individual agent with sufficient liquidity.

Security is enforced through daily expiring and deterministic escrow flows,
governance-set parameters, and an emergency fall-back to a secure custodian
wallet in case of anomalies being detected. It is worth mentioning that Coinspect
did not observe mechanisms to detect signs of compromise or anomalies.

4.1 Core Vault Analysis

4.1.1 Fund Inflows and Outflows

The following analysis outlines the defined mechanisms by which funds enter and
exit the Core Vault, based on protocol specifications.

Inflows

 Agent Deposits to Unlock Collateral� Agents may transfer underlying assets
(e.g., XRP� to the Core Vault's predefined address on the underlying chain.

© Coinspect 2025 8 / 40

Once the system receives and validates the payment, the agent's collateral
on Flare is unlocked. This flow is initiated through a manual agent request
and supports further minting or reallocation of collateral.

 Daily Escrow Expiry� Each day, one escrow expires and releases a
predefined lot size of XRP (denoted as L) back into the Core Vault. This
scheduled inflow is part of the vault's risk management model, ensuring
controlled replenishment of liquidity.

Outflows

 Agent Withdrawals by Locking Collateral� Agents may request a withdrawal
of XRP from the Core Vault by locking additional collateral on Flare. These
operations are authorized and executed by Core Vault multi-signers as
explained below.

 Direct Redemption by Whitelisted Users� Whitelisted users who meet KYC
requirements may request to redeem their FAssets (fXRP� directly from the
Core Vault. After burning the FAssets, the redemption is processed and paid
out during the vault's daily signing window. These redemptions are subject to
longer latency compared to agent redemptions.

 Escrow Creation from Excess Funds� Each time the triggerInstructions
function from the CoreVaultManager contract is called to process payments,
the vault evaluates remaining liquidity. Any amount above the minimum
reserve threshold (M) is split into new escrow accounts in fixed lot sizes (L).
The escrow system locks funds with release dates structured sequentially
one day apart, reducing exposure in the event of a compromise. The
intended flow is for those escrows to expire, making the funds available
again to the Core Vault for payments if needed. Any unused funds are then
returned to escrow.

 Emergency Escrow Releases to Custodian� In exceptional circumstances,
such as a detected security incident, the Flare Foundation may authorize
escrowed funds to be released to a predefined custodian address. This
bypasses normal expiration logic and is executed under strict governance
control.

4.1.2 Interactions with Bots

The Core Vault Manager smart contract emits important events that are
consumed by the offchain bots. This system, triggers actions on each agent's bot
allowing to process payments and submit the respective proofs to the smart
contracts.

© Coinspect 2025 9 / 40

Coinspect identified that the TransferToCoreVaultSuccessful event is not handled
by any bot, but the process relies on the legacy events of the FAsset system
related to redemptions to update their bookkeeping.

4.1.3 Interactions with the Multisig's Backend

Core actions such as payment requests and escrow creations emit an event after
the governance executes the triggerInstructions function at the CoreVaultManager
contract. This function processes payments and handles balance surplus to
manage the escrow creation process. Then, the multisig's backend fetches these
events and triggers the signing process. After collecting enough signatures, the
multisig creates the instructed escrows and makes the payments.

4.2 Security assumptions

For this security assessment, Coinspect made the following assumptions:

Flare governance does not have malicious intent.
Core Vault �CV� actors do not collude.
The agents' underlying address is immutable. Changing this assumption will
introduce Denial-of-Service risks in Core Vault.
Agents will not be able to share the underlying address, as it enables Denial-
of-Service scenarios in Core Vault.
Agents are strictly limited to a single active transfer to or from the Core Vault
at any given time.
Core Vault multisig members are not compromised and the threshold chosen
for this multisig is sufficient.

4.3 Decentralization Analysis

The FAsset Core Vault system enhances system liquidity using a federated control
model, operated by a multi-signature group of trusted entities with Flare
Foundation oversight. Its functionality relies on transaction signing based on smart
contract events, introducing dependencies on these operators; direct user
redemptions are additionally permissioned via KYC.

Associated counter-party and operational risks inherent to this semi-centralized
design are mitigated through security measures like time-locked XRP escrows
imposing daily capital limits.

© Coinspect 2025 10 / 40

5. Detailed Findings

FAS�049
Agents risk paying confirmation rewards
due to CoreVault downtime

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

fasset/contracts/assetManager/library/RedemptionConfirmations.sol

fasset/contracts/assetManager/library/CoreVault.sol

Description

Agents may be forced to pay for third-party payment confirmations if the
CoreVault contract is re-enabled and they have pending payment proofs.

Currently, once an agent calls transferToCoreVault to create a transfer
request, they must submit payment proof via

© Coinspect 2025 11 / 40

RedemptionConfirmations.confirmRedemptionPayment, which internally invokes
CoreVault.confirmTransferToCoreVault(). If CoreVault is disabled between the
request and the proof submission, the confirmation will fail due to the
onlyEnabled modifier:

function confirmTransferToCoreVault(
 IPayment.Proof calldata _payment,
 Agent.State storage _agent,
 uint64 _redemptionRequestId
) internal onlyEnabled
...

This not only leaves the agent's collateral locked until CoreVault is re-enabled,
but also exposes the agent to the risk of paying a third-party confirmation
reward if the re-enablement occurs after confirmationByOthersAfterSeconds of
the transfer request creation:

if (!isAgent) {
 Agents.payForConfirmationByOthers(agent, msg.sender);
}

Coinspect considers the likelihood to be low since it would require specific
timing with the CoreVault being disabled during the confirmation window.

Recommendation

Allow agents a grace period to submit payment confirmations after CoreVault
is re-enabled, before accepting submissions from third parties. Also, since
submitting payment proofs—whether valid or invalid—serves the agents'
interests by unlocking their collateral, another approach would be to restrict
third parties from submitting these proofs.

Status

Fixed in commit fba4f5b6e2227eaa195d4272c9875783f8dd180c. The Core
Vault contract can no longer be disabled since, once the Core Vault manager
address is set, it cannot be reset to address(0).

© Coinspect 2025 12 / 40

FAS�050
Agents can mistakenly overpay fees

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

fasset/contracts/assetManager/library/CoreVault.sol:80

Description

When an agent creates a transfer to vault request, they could lose the fees
provided in native assets if they mistakenly send more than required. As a
consequence, the fee recipient gets more fees than required and the Agent
has no means to recover them.

As shown in the snippet below, the function expects to receive at least the
transfer fee.

require(msg.value >= transferFeeWei, "transfer fee payment too small");

Which is then entirely transferred to the fee recipient.

// pay the transfer fee
Transfers.transferNAT(state.nativeAddress, msg.value); // guarded by

© Coinspect 2025 13 / 40

nonReentrant in the facet

Recommendation

Limit the maximum value of msg.value.

Status

Fixed in commit dd5baf741540569968ce2b0fb6628a8eb0f818a0. Funds
exceeding the required fee are returned to the user. However, despite the
reentrancy guard protection, Coinspect recommends moving the refund to
the end of the function to follow the checks-effects-interactions pattern.

© Coinspect 2025 14 / 40

FAS�051
Violation of checks-effects-interaction
pattern

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset/contracts/assetManager/library/Redemptions.sol (f75ddaa)

Description

The payOrBurnExecutorFee function transfers NAT tokens to the executor
address (msg.sender) before resetting the executorFeeNatGWei request state
variable. This order of operations violates the checks-effects-interactions
pattern, which dictates that state changes should occur before external calls
to mitigate reentrancy risks.

function payOrBurnExecutorFee(
 Redemption.Request storage _request
)
 internal
{
 if (_request.executorFeeNatGWei == 0) return;
 if (msg.sender == _request.executor) {
 Transfers.transferNAT(_request.executor,
_request.executorFeeNatGWei * Conversion.GWEI);

© Coinspect 2025 15 / 40

 } else if (_request.executorFeeNatGWei > 0) {
 Agents.burnDirectNAT(_request.executorFeeNatGWei *
Conversion.GWEI);
 }
 _request.executorFeeNatGWei = 0;
}

Note that further analysis by Coinspect concluded that this violation does not
pose an actual risk, since all calling functions implement appropriate
reentrancy safeguards.

Recommendation

Consider following the checks-effects-interactions pattern by setting
executorFeeNatGWei to zero prior to the token transfer.

Status

Fixed in commit f75ddaa324690c2dd637d06c8b30a776bf0107c5. The
executorFeeNatGWei variable is now zeroed before paying this fee to the
executor.

© Coinspect 2025 16 / 40

FAS�052
Unbounded loop when processing
requests could deny executing core vault
operations

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset/contracts/assetManager/implementation/CoreVaultManager.sol:176

Description

The for loop below will run out of gas if too many cancelableTransferRequests
are created.

for (uint256 i = 0; i < cancelableTransferRequests.length; i++) {
 TransferRequest storage req =
transferRequestById[cancelableTransferRequests[i]];
 require(keccak256(bytes(req.destinationAddress)) !=
destinationAddressHash, "request already exists");
}

However, Coinspect understands this is not possible due to:

© Coinspect 2025 17 / 40

 The controlled number of agents.
 The inability for agents to modify their underlying address.

Shall any of these conditions change, there is risk of Denial-of-Service
preventing redemptions from the Core Vault.

Recommendation

Document the conditions and system assumptions that allow all the unbound
loops at CoreVaultManager not running out of gas.

Status

Acknowledged. As documented in commit
30ac5b2f1abf7b80351a169dac01f950146edb3c, the number of requests
depend directly on the number of agents, which is limited by the governance.

© Coinspect 2025 18 / 40

FAS�053
Users are unprotected against missing or
malformed vault redemption payments

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
High
Likelihood
Low

Location

fasset/contracts/assetManager/implementation/CoreVaultManager.sol

Description

Users requesting redemptions from the Core Vault have no way to challenge
payments that are incorrect or not made—such as underpayments. This
forces users to place a high degree of trust in the multisig operators.

The root cause is the requestReturnFromCoreVault function, which lacks logic
to create a redemption request object. Without this, the system cannot
validate the payment or trigger a default, as would normally be handled by
RedemptionConfirmations.confirmRedemptionPayment.

Redemption.Request storage request =
Redemptions.getRedemptionRequest(_redemptionRequestId);
...

© Coinspect 2025 19 / 40

(bool paymentValid, string memory failureReason) =
_validatePayment(request, _payment);

Although the specification notes that these operations have low priority and
may take longer than standard redemptions, the following scenario illustrates
the problem:

A user initiates a redemption, and their fAssets are immediately burned.
Days later, due to a payment issue, no underlying is transferred from the
Core Vault to the user.
The user has no recourse to dispute or default the non-payment.

Recommendation

Enable users to challenge or default invalid payments from Core Vault
redemptions in order to get the burned fAssets back on the Flare chain.

Status

Acknowledged. The Flare team stated that users are expected to fully trust
the Core Vault by design.

© Coinspect 2025 20 / 40

FAS�054
Core vault transfers force agents to get
close to insolvency

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset/contracts/assetManager/library/CoreVault.sol:273

Description

Agents attempting a transfer to the Core Vault must lower their collateral
ratio to increase the maximum transferrable amount when
minimumAmountLeftBIPS is set above zero. Consequently, if several agents
perform this operation simultaneously, the system's overall health ratio may
drop to a borderline-critical level, approaching liquidation.

When tranferring to the Core Vault, Agents can send up to a maximum value:

(uint256 maximumTransferAMG,) =
getMaximumTransferToCoreVaultAMG(_agent);
require(transferredAMG <= maximumTransferAMG, "too little minting left
after transfer");

© Coinspect 2025 21 / 40

This constraint depends on the collateral they have:

function getMaximumTransferToCoreVaultAMG(
 Agent.State storage _agent
)
 internal view
 returns (uint256 _maximumTransferAMG, uint256
_minimumLeftAmountAMG)
{
 _minimumLeftAmountAMG = _minimumRemainingAfterTransferAMG(_agent);
 _maximumTransferAMG = MathUtils.subOrZero(_agent.mintedAMG,
_minimumLeftAmountAMG);
}

This calculation is made estimating the maximum supported asset minting
granularity for a given amount of collateral. And then, the minimum value
between the pool collateral, agent collateral and agent pool tokens is used as
the subtracting member to determine _maximumTransferAMG.

function _minimumRemainingAfterTransferAMG(
 Agent.State storage _agent
)
 private view
 returns (uint256)
{
 Collateral.CombinedData memory cd =
AgentCollateral.combinedData(_agent);
 uint256 resultWRTVault =
_minimumRemainingAfterTransferForCollateralAMG(_agent,
cd.agentCollateral);
 uint256 resultWRTPool =
_minimumRemainingAfterTransferForCollateralAMG(_agent,
cd.poolCollateral);
 uint256 resultWRTAgentPT =
_minimumRemainingAfterTransferForCollateralAMG(_agent,
cd.agentPoolTokens);
 return Math.min(resultWRTVault, Math.min(resultWRTPool,
resultWRTAgentPT));
}

function _minimumRemainingAfterTransferForCollateralAMG(
 Agent.State storage _agent,
 Collateral.Data memory _data
)
 private view
 returns (uint256)
{
 State storage state = getState();
 (, uint256 systemMinCrBIPS) =
AgentCollateral.mintingMinCollateralRatio(_agent, _data.kind);
 uint256 collateralEquivAMG =
Conversion.convertTokenWeiToAMG(_data.fullCollateral,
_data.amgToTokenWeiPrice);
 uint256 maxSupportedAMG =
collateralEquivAMG.mulDiv(SafePct.MAX_BIPS, systemMinCrBIPS);

© Coinspect 2025 22 / 40

 return maxSupportedAMG.mulBips(state.minimumAmountLeftBIPS);
}

Consider the following scenario:

Agent A, has the equivalent value of $1000 in each one of the three
collateral types.
Agent B, has $500.

Both agents are exposed to the same minting of $1200.

Then the calculation for Agent A returns a smaller value than Agent's B.

This issue assumes that minimumAmountLeftBIPS is non-zero, which yields a
non-zero result when calling _minimumRemainingAfterTransferForCollateralAMG.

Recommendation

Improve the maximum boundary calculation to reduce the incentive of
lowering the collateral ratio of an agent.

Status

Acknowledged. Although still possible, scenarios where users must
decollateralize due to excess collateral are unlikely. The Flare team noted that
this limitation could still be circumvented by transferring to the Core Vault
multiple times.

Proof of Concept

The following test demonstrates that an agent with higher collateral is subject
to a lower maximum transferable amount compared to one with less
collateral. For this test, minimumAmountLeftBIPS was set to 1,

Output for fullAgentCollateral set to 10e8:

_agent.mintedAMG 104000000000
_maximumTransferUBA 52490546038
_minimumLeftAmountUBA 51509453962

Output when fullAgentCollateral is increased significantly (e.g., 40e8):

© Coinspect 2025 23 / 40

_agent.mintedAMG 104000000000
_maximumTransferUBA 0
_minimumLeftAmountUBA 170377378490

As a result, the maximum transferable amount drops to zero.

it.only("should transfer all backing to core vault", async () => {
 const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
 const minter = await Minter.createTest(context, minterAddress1,
underlyingMinter1, context.underlyingAmount(1000000));
 const redeemer = await Redeemer.create(context, minterAddress1,
underlyingMinter1);
 const cv = await Redeemer.create(context,
context.initSettings.coreVaultNativeAddress,
coreVaultUnderlyingAddress);

 await context.assetManager.setCoreVaultMinimumAmountLeftBIPS(1, {
from: context.governance });

 const fullAgentCollateral = toWei(10e8);
 await agent.depositCollateralsAndMakeAvailable(fullAgentCollateral,
fullAgentCollateral);

 await agent.collateralPool.enter(0, false, { from: minterAddress2,
value: toWei(3e8) });

 const [minted] = await minter.performMinting(agent.vaultAddress,
10);

 await context.updateUnderlyingBlock();
 const { 0: currentBlock, 1: currentTimestamp } = await
context.assetManager.currentUnderlyingBlock();

 const info = await agent.getAgentInfo();
 const transferAmount = info.mintedUBA;

 const cbTransferFee = await
context.assetManager.transferToCoreVaultFee(transferAmount);

 await expectRevert(
 context.assetManager.transferToCoreVault(agent.vaultAddress,
transferAmount, {
 from: agent.ownerWorkAddress,
 value: cbTransferFee.subn(1),
 }),
 "transfer fee payment too small"
);

 const tx = await
context.assetManager.maximumTransferToCoreVault(agent.vaultAddress);
 const receipt = await tx.wait();

 for (const log of receipt.logs) {
 try {
 const parsed =
context.assetManager.interface.parseLog(log);
 console.log(`� Event: ${parsed.name}`);

© Coinspect 2025 24 / 40

 console.log("Args:");
 parsed.eventFragment.inputs.forEach((input, index) => {
 console.log(` ${input.name}:
${parsed.args[index].toString()}`);
 });
 } catch (err) {
 // Ignore unrelated logs
 }
 }
});

© Coinspect 2025 25 / 40

FAS�055
Escrows finalized close to expiry time
decouple the Core Vault internal
accountancy

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
High
Likelihood
Low

Location

fasset/contracts/assetManager/implementation/CoreVaultManager.sol

Description

Escrows executed and finalized close to expiry times might be processed by
the Core Vault Manager as expired, mistakenly assuming that the transferred
funds are now available. As a consequence, any transfer request made
between this stage and the bookkeeping call to setEscrowsFinished will have
more funds available than the real balance of the core vault on XRP.

The state of escrows at CoreVaultManager contract on Flare is untied to what
actually happens on XRP. In other words, escrow amounts and expiry times
are not strictly validated in any way. Hence, the whole system trusts that the
multisig's backend manages escrows under the specified parameters of the
events emitted by the CoreVaultManager contract. Additionally, there is no

© Coinspect 2025 26 / 40

proof system to support or validate the state of escrows, being the only
conditions to determine their extinction:

 Release of preimage hashes
 Reaching the expiry timestamp

However, because of this untied state, escrows could be created at the
backend (e.g. due to a bug or backdoor) with different finalization or expiry
conditions.

Besides that, even if we assume that escrows are created according to what
each EscrowInstructions event specifies, because there is no proof system the
following scenario could happen:

 An escrow is close to expiry (e.g. some seconds or minutes away).
 The escrow is finalized and funds are transferred from the Vault to the

Custodian (underlying Core Vault balance is decreased).
 The processEscrows function is called, since it is an external function

allowing anyone to update the smart contract's state. This call assumes
that the escrow expired, reducing the escrowed funds, adding them to
the available funds variable.

 A transfer request is made.
 When the governance tries to call the setEscrowsFinished function, the

execution underflows when trying to update the escrowed funds:

 Escrow storage escrow = _getEscrow(escrowIndex);
 require(!escrow.finished, "escrow already finished");
 escrow.finished = true;
 if (escrowIndex <= nextUnprocessedEscrowIndex) {
 availableFundsTmp -= escrow.amount;
 } else {
 escrowedFundsTmp -= escrow.amount;
 }

In summary:

 When the system is bootstrapping and there is low liquidity at the Core
Vault, requests for a high percentage of the liquidity are more likely. As a
result, the scenario mentioned before also becomes more likely.

 Even if the overflow does not happen, the Core Vault will be able to
trigger a payment instruction for a request for an amount exceeding its
actual balance due to its decoupling with the availableFunds variable.

This issue is considered to have low likelihood as it requires multiple
conditions to happen such as finalizing an escrow right before the expiry and
requesting a transfer right before setting the escrow as finished. The impact is
considered high as transfers for more than the vault actually has can be
requested. The impact is amplified for non-cancellable requests as user's

© Coinspect 2025 27 / 40

funds are burned and the only way for them to get the counterpart is by
receiving the payment on the underlying chain.

Recommendation

Allow redeemers to provide payment default proofs after a sufficient period
to recover burned assets.

Status

Acknowledged. Flare will control the timing so that setEscrowsFinished is
called before escrows are released.

Proof of Concept

The following test shows how a transfer request between the escrow expiry
and finalization call, triggers an underflow and breaks the tracking of funds.

The scenario is based on the "should set already processed escrow as
finished" test case.

it("Coinspect - Finished escrow just before expiry breaks available
funds tracking", async () => {
// fund contract
const transactionId = web3.utils.keccak256("transactionId");
const proof = createPaymentProof(transactionId, 500);
await coreVaultManager.confirmPayment(proof);

// trigger instructions - not enough funds to create escrow
await coreVaultManager.triggerInstructions({ from: accounts[1] });
assertWeb3Equal(await coreVaultManager.availableFunds(), 500);
assertWeb3Equal(await coreVaultManager.escrowedFunds(), 0);

// add funds for fee
const transactionId1 = web3.utils.keccak256("transactionId1");
const proof1 = createPaymentProof(transactionId1, 15);
await coreVaultManager.confirmPayment(proof1);
// trigger instructions - create escrow
await coreVaultManager.triggerInstructions({ from: accounts[1] });
assertWeb3Equal(await coreVaultManager.availableFunds(), 300);
assertWeb3Equal(await coreVaultManager.escrowedFunds(), 200);

// move to the expiry of the escrow
await time.increase(2 * DAY);
await coreVaultManager.triggerInstructions({ from: accounts[1] });
assertWeb3Equal(await coreVaultManager.availableFunds(), 500); // We
assume that the escrow indeed was finalized

© Coinspect 2025 28 / 40

assertWeb3Equal(await coreVaultManager.escrowedFunds(), 0);

// request transfer
const amount = "400"; // The request believes that there are still 500
at the vault on XRP, but 200 were sent to the custodian
const paymentReference = web3.utils.keccak256("ref1");
await coreVaultManager.requestTransferFromCoreVault(
 destinationAddress1,
 paymentReference,
 amount,
 true,
 {
 from: assetManager,
 }
);
// trigger instructions
await coreVaultManager.triggerInstructions({ from: accounts[1] });
assertWeb3Equal(await coreVaultManager.availableFunds(), 500 - 400 -
15);

// // set escrow as finished; available funds will decrease
await coreVaultManager.setEscrowsFinished([preimageHash1], { from:
governance });
// assertWeb3Equal(await coreVaultManager.availableFunds(), 85 - 200);
// !!!! underflows
});

© Coinspect 2025 29 / 40

FAS�056
Large redemptions from core vault can be
denied by smaller ones

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
High
Likelihood
Low

Location

fasset/contracts/assetManager/implementation/CoreVaultManager.sol

Description

Redemption requests to the Core Vault involving large amounts—near or
exceeding available funds—are never executed. This is because unfulfillable
requests are skipped in favor of smaller ones that can be processed. Since
these redemption requests are non-cancellable, this may result in a scenario
where the required funds are never available, effectively leaving them locked.

This issue also relies on the fact that once all requests are processed, if there
is a reminder of funds over the minimum Core Vault's balance, escrows are
created.

Before making an action from the Core Vault, the multisig backend calls
triggerInstructions at the CoreVaultManager contract. This function:

© Coinspect 2025 30 / 40

 Checks for expired escrows and if so, adds their amount to the vault
available funds

 Processes cancellable requests, following the array ordering �FIFO�
 Processes non-cancellable requests, following the array ordering �FIFO�
 In case of surplus, creates escrows ensuring that at least a minimum

balance is always held by the core vault.

The steps 2 and 3 validate that the transfer can be made by checking against
the Core Vault's available funds:

if (availableFundsTmp >= transferRequestById[transferRequestId].amount
+ feeTmp) {
 // process request and emit event
} else {
 index++; // move on to the next request,
}

However, when creating a redemption request, users can request more than
the available funds since it considers also the escrowed funds:

function getTotalCoreVaultAvailable()
 internal view
 returns (uint256)
{
 State storage state = getState();
 uint256 allFunds = uint256(state.coreVaultManager.availableFunds()
+ state.coreVaultManager.escrowedFunds());
 uint256 requestedAmount =
uint256(state.coreVaultManager.totalRequestAmountWithFee()) +
 getCoreVaultUnderlyingPaymentFee(); // extra fee for the
upcoming request
 return MathUtils.subOrZero(allFunds, requestedAmount);
}

As a result, there could be some cases when an overly large redemption
request is never fulfilled.

Consider the following scenario (neglecting fees):

Available Funds = 1100
Escrows = 400, two escrows with escrowAmount = 200.

Then allFunds = 1500. Minimum balance is 1000.

 Request B (cancellable) � 200
 Request A (non cancellable) � 1200

Then, reserved funds = 1400. When triggering instructions, since
availableFunds < Request A = 1200, is skipped and only B is processed. Then:

Available Funds = 1100 - 200 = 900. No escrows are created.

© Coinspect 2025 31 / 40

At some point, another transfer to Core Vault of 200 is made.

Available Funds = 1100. No escrows are created.

And some returns are requested afterwards, when triggering instructions:

Request B � 100 (cancellable). Fulfilled.
Request C � 100 (cancellable). Fulfilled.
Request A (non cancellable) � 1200. Not fulfilled.

No escrows are created.

The fact that these redemptions create non-cancellable requests, force users
that burned their fAssets to wait until there are enough funds in the Core Vault
for their transfer to be processed.

Recommendation

Do not prioritize smaller, cancellable requests over larger ones. If
prioritization is necessary, consider enabling cancellation of currently non-
cancellable requests.

Status

Acknowledged. If any large requests stall due to insufficient funds, Flare will
release funds to the custodian, who is then expected to redeposit them into
the multisig. Note that this implies using the custodian account for non-
emergency tasks.

© Coinspect 2025 32 / 40

FAS�057
Array of escrows always grows

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset/contracts/assetManager/implementation/CoreVaultManager.sol

Description

The array of escrows at the CoreVaultManager contracts increases if triggering
instructions creates new escrows and the contract has no cleanup. As a result,
the cost of interacting with this always-increasing ramps up in time potentially
affecting all interactions that rely on the escrows' state.

Escrow memory escrow = Escrow({
 preimageHash: preimageHash,
 amount: escrowAmountTmp,
 expiryTs: escrowEndTimestamp,
 finished: false
});
escrows.push(escrow);

Although escrows are only created under certain conditions after calling the
triggerInstructions function, and the specification mentions that the

© Coinspect 2025 33 / 40

governance will call this function once per day, there are no restrictions to
enforce this design choice.

Recommendation

Allow pruning old enough escrows.

Status

Acknowledged. Flare stated that the core vault will operate for under a year
before transitioning to FAssetV2, and they expect only a small number of
escrows per day. If more than one or two are created, they will raise the daily
escrow limit.

© Coinspect 2025 34 / 40

FASO�045
Partially hardcoded API response can
trigger wrong actions

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

fasset-bots/packages/fasset-bots-api/src/bot-
api/agent/services/agent.service.ts

Description

The getRedeemableCVData API endpoint returns hardcoded values, potentially
misleading users or systems into making decisions based on incorrect
assumptions.

This behavior stems from the getVaultRedeemableCVData function, which
hardcodes the requestableLotsCV and minimumLotsToRedeem fields:

return { redeemableLotsOwner: ownerLots.toNumber(), requestableLotsCV:
123, minimumLotsToRedeem: 10, lotSize: lotSizeAsset };

A similar issue is present in the getAgentVaults function behind the vaults
endpoint:

© Coinspect 2025 35 / 40

transferableToCV: "10,200.24",
underlyingSymbol: cli.context.chainInfo.symbol,
transferableFromCV: "10,200.24",
redeemCapacity: (toBN(info.mintedUBA).div(lotSize)).toString()

Recommendation

Ensure these values are retrieved dynamically from the actual source. If not
feasible, remove the fields to avoid misinforming consumers.

Status

Fixed in commits 0643ebfeb49204287e9462fcff0566baa1850529 and
3c3fb4bac5bf9957e0cc2c92e77798846482bfcf. The
getVaultRedeemableCVData function as well as the fixed return values from the
getAgentVaults function were removed from the code..

© Coinspect 2025 36 / 40

FASO�046
Replacement transactions might not go
through due to insufficient funds

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset-bots/packages/simple-wallet/src/chain-
clients/utxo/TransactionService.ts

Description

The simple-wallet does not ensure that Replace-By-Fee �RBF� transactions
include enough inputs to cover the increased fee. As a result, RBF attempts
for underlying withdrawal transactions may be invalid.

Currently, simple-wallet uses RBF in two cases:

Payment transactions� Since these are time-sensitive, RBF is used to
cancel them near the deadline by replacing them with a near-zero-value
transaction. This prevents the bot from broadcasting the Payment and
risking a double payout.
Underlying withdrawal transactions� These are not time-bound, so RBF is
used simply to speed up confirmation.

© Coinspect 2025 37 / 40

This issue specifically affects underlying withdrawals, and would only result in
delays. The limitation is already acknowledged in the code:

// TODO what if not enough utxos to cover - add confirmed ones
return [tr, rbfUTXOs];

Recommendation

Ensure RBF transactions are constructed with sufficient inputs to cover the
increased fee.

Also, consider documenting where each RBF policy rule is implemented
directly in the codebase.

Status

Acknowledged. The Flare team indicated that RBF transactions for underlying
withdrawals are not subject to time restrictions.

© Coinspect 2025 38 / 40

FASO�047
Wrong notifier event

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset-bots/packages/fasset-bots-core/src/actors/AgentBotMinting.ts

Description

The sendSelfMintPaymentTooSmall notification is incorrectly used for errors
related to insufficient free collateral, making it harder to analyze logs
accurately.

if (errorIncluded(error, ["self-mint payment too small"])) {
 ...
 await this.notifier.sendSelfMintPaymentTooSmall(String(lots),
String(maxMintLots));
 ...
} else if (errorIncluded(error, ["not enough free collateral"])) {
 ...
 await this.notifier.sendSelfMintPaymentTooSmall(String(lots),
String(freeCollateralLots));

© Coinspect 2025 39 / 40

Recommendation

Trigger a dedicated notifier for the "not enough free collateral" case to ensure
accurate event logging.

Status

Fixed in commit cb3f3913f944b38d3c32a974d928b89ac810dad5. The
sendSelfMintCollateralTooLow function is now triggered on errors related to
insufficient free collateral.

© Coinspect 2025 40 / 40

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

