

© Coinspect 2025 1 / 12

Voter pre-register and FTSO
Management Group

Smart Contract Audit

Version: v250109 Prepared for: Flare January 2025

Security Assessment

1. Executive Summary
2. Summary of Findings

2.3 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Security assumptions
4.2 Decentralization
4.3 Testing
4.4 Code quality

5. Detailed Findings

© Coinspect 2025 2 / 12

FLRM�01 � Quorum is diluted when members are
chilled after being added to the management group

6. Disclaimer

© Coinspect 2025 3 / 12

1. Executive Summary
In December, 2024, Flare engaged Coinspect to perform a Smart Contract Audit
of the new Pre-Registry feature and FTSO Management Group. The objective of
the project was to evaluate the security of the smart contracts.

The mentioned features enable pre-registration during a reward epoch for the
next reward epoch for voters that are registered in the current reward epoch. The
FTSO Management Group is a revamped version of the Polling FTSO smart
contract adapted to support FTSO V2 system.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
1

Medium
0

Medium
0

Low
0

Low
0

Low
0

No Risk
0

No Risk
0

No Risk
0

Total

1
Total

0
Total

0

During the security assessment, Coinspect identified the following issues: FLRM-01
shows how Management Groups of the new polling system are not updated if a
voter is chilled after being added, which allows misbehaving accounts to keep
participating of the voting process.

https://flare.network/
https://coinspect.com/

© Coinspect 2025 4 / 12

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

FLRM�01 Quorum is diluted when members are chilled after being
added to the management group Medium

© Coinspect 2025 5 / 12

3. Scope
The scope was set to be the repositories:

Flare Smart Contracts at https://gitlab.com/flarenetwork/flare-smart-
contracts-v2 from 05d8d92052b3ebb1104df1e4773f3a3928cdd00b to
5c88d3847f0bd4117844bcbe2272d9bb610e32bc.
Flare System Client at https://gitlab.com/flarenetwork/flare-system-client from
90498b9e4e329a90cb4d730a14cd0a0f0f1e7bc6 to
ae69f635e6a3b1fd05cd200106a80b51253d9c63.

https://gitlab.com/flarenetwork/flare-smart-contracts-v2
https://gitlab.com/flarenetwork/flare-system-client

© Coinspect 2025 6 / 12

4. Assessment
Flare added a new smart contract that aims to improve the voter registering
process. This new smart contract, named VoterPreRegistry allows voters that are
active in the current signing policy to pre-register for the next epoch.

The main goal of this smart contract is to increase the system's stability by
allowing voters to pre-register before the new epoch starts in case there is
downtime when the new epoch starts. To process and allow a pre-registration, the
smart contract requires voters to be registered on the current signing policy, and
validates their signature. Once these steps are validated, the voter is added to a
pre-registering list.

When the upcoming epoch starts, the Flare Systems Manager smart contract tries
to add all pre-registered voters to the new epoch's voters list inside the
daemonize() call. This call occurs at the beginning of each block. The process of
adding each voter is executed via try-catch logic, to prevent abuse and halting
the daemonize call in case a voter cannot be added to the new voters list.

To support the pre-registration process, the Flare Team modified the System
Client allowing voters to submit the pre-registration signature before a new epoch
starts as an opt-in feature. On top of adding this new functionality, the System
Client logging was improved.

Moreover, the PollingFTSO smart contract was removed and replaced by the
PollingManagementGroup contract. This adapted version of the older polling smart
contract includes changes to support the FTSO V2 system.

The FTSO Management Group smart contract implements a self-regulatory
framework within the FTSO ecosystem to monitor and address potential
misconduct among data providers. Through a committee of qualified providers
who maintain active participation and consistent performance, the system
establishes a structured process for addressing infractions, requiring public
discussion in the Flare FTSO Self-Policing Forum followed by formal on-chain
voting that demands both a 66% quorum and majority support.

The system employs a graduated penalty structure where first-time infractions
result in temporary suspension for two FTSO reward epochs, while second
violations trigger permanent exclusion from the whitelist, handled by an off-chain
component out of this audit's scope. Under the oversight of the Flare Foundation,
this governance structure operates independently on both Flare and Songbird
networks, specifically targeting behaviors that compromise ecosystem integrity
such as coordinated price submissions and duplicate operations across nodes.

© Coinspect 2025 7 / 12

Membership in the management group requires providers to demonstrate
sustained performance by earning rewards over 20 consecutive epochs and
maintaining a clean disciplinary record without recent chilling penalties. Members
can face removal if they fail to earn rewards for two consecutive epochs or
demonstrate insufficient voting participation, specifically missing votes in half of
the most recent four proposals that achieved quorum. Additionally, the Flare
Foundation retains the authority to directly add or remove members as needed,
ensuring active and responsible participation in the governance system.

4.1 Security assumptions

For this assessment, Coinspect made the following assumptions:

Each voter decides using the System Client parameters whether to pre-register
or not for the following epoch
The Flare Foundation acts honestly respecting what is stated on the FIP�2

4.2 Decentralization

The pre-registering process heavily relies on the flare daemon to fulfill the
registration process for the upcoming epoch. Moreover, the FTSO Management
and voting process requires the Flare Foundation to execute the outcome of a
proposal. The FIP�2 claims that the Flare Foundation reserves the right to not act
upon the results of the voting.

4.3 Testing

Test cases were added to evaluate the behavior of the newly added components.
Coinspect was able to quickly write new scenarios thanks to the updated testing
suite.

4.4 Code quality

Coinspect observed that the code quality is high, including relevant comments
and NatSpec when appropriate. This documentation allows users, developers and
any other stakeholder to understand what a smart contract, function and variable
does.

https://proposals.flare.network/FIP/FIP_2.html#2-technical-description
https://proposals.flare.network/FIP/FIP_2.html#2-technical-description

© Coinspect 2025 8 / 12

5. Detailed Findings

FLRM�01
Quorum is diluted when members are
chilled after being added to the
management group

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

flare-smart-contracts-
v2/contracts/governance/implementation/PollingManagementGroup.sol

Description

Voters can be chilled after they are added to the member list and keep
operating at the management contract. As a consequence, they are still
allowed to submit proposals and participate on the voting of ongoing
proposals.

© Coinspect 2025 9 / 12

The PollingManagementGroup smart contract restricts adding accounts to the
member list if they were chilled for the last 20 blocks:

// check if voter was chilled in last reward epochs
if (voterRegistry.chilledUntilRewardEpochId(bytes20(voter)) +
addAfterNotChilledEpochs >= currentRewardEpoch) {
 revert("recently chilled");
}

After an account is added to the management group, the system considers
they can propose and cast votes:

 function _addMember(
 address _voterToAdd,
 uint256 _currentRewardEpoch
)
 internal
 {
 managementGroupMembers.add(_voterToAdd);
 // id of the last created proposal
 memberAddedAtProposal[_voterToAdd] = idCounter;
 memberAddedAtRewardEpoch[_voterToAdd] = _currentRewardEpoch;
 delete memberRemovedAtTs[_voterToAdd];
 emit ManagementGroupMemberAdded(_voterToAdd);
 }

 function _canPropose(address _voter) internal view returns (bool) {
 return managementGroupMembers.index[_voter] != 0;
 }

 function _canVote(address _voter, uint256 _proposalId) internal
view returns (bool) {
 Proposal storage proposal = proposals[_proposalId];
 return proposal.isEligible[_voter];
 }

Where the eligibility is determined upon proposal creation if the account is
part of the management group:

for (uint256 i = 0; i < members.length ; i++) {
 proposal.isEligible[members[i]] = true;
}

As a consequence, if an account is chilled after they are added to the
management group, they can still perform all the before mentioned actions in
spite of the fact they were punished. Moreover, the specification does not
consider this scenario as a condition to remove a member.

© Coinspect 2025 10 / 12

Coinspect considers the likelihood of this issue to be medium since it is
possible that an active member of the management group is chilled after
being added. The impact is also medium since it requires multiple chilled
accounts already added to the group to effectively impact on an ongoing
voting process and the group maintainer can still manually remove the
conflictive voters.

Recommendation

Allow anyone to remove a voter from the management group if they were
chilled for the last 20 blocks.

Status

Fixed on commit 09bedaa50569718d80f18977067b9bb361de5722.

A new condition was added to removeMember that allows to remove a member
if they were recently chilled.

Proof of Concept

The following test shows how the chilling status of an account does not
affect their privileges to participate on an ongoing voting process at the
Polling smart contract.

function testCoinspect_ChilledProviderCanStillVote() public {
 testPropose();

 // voters did not vote yet
 for (uint256 i = 0; i < 4; i++) {
 assertEq(pollingManagementGroup.hasVoted(1, voters[i]), false);
 }
 (uint256 votesFor, uint256 votesAgainst) =
pollingManagementGroup.getProposalVotes(1);
 assertEq(votesFor, 0);
 assertEq(votesAgainst, 0);
 assertEq(uint256(pollingManagementGroup.state(1)), 1);

 // move to voting period -> proposal is active
 vm.warp(123 + 3600);
 assertEq(uint256(pollingManagementGroup.state(1)), 2);

 // At some point, voter 1 is chilled for 1000 epochs
 _mockChilledUntilRewardEpochId(voters[0], 1000);

 // voters 1 and 2 vote (in favor)

© Coinspect 2025 11 / 12

 vm.prank(voters[0]);
 vm.expectEmit();
 emit VoteCast(voters[0], 1, 1, 1, 0);
 pollingManagementGroup.castVote(1, 1);
 vm.prank(voters[1]);
 vm.expectEmit();
 emit VoteCast(voters[1], 1, 1, 2, 0);
 pollingManagementGroup.castVote(1, 1);
 for (uint256 i = 0; i < 2; i++) {
 assertEq(pollingManagementGroup.hasVoted(1, voters[i]), true);
 }
 (votesFor, votesAgainst) =
pollingManagementGroup.getProposalVotes(1);
 assertEq(votesFor, 2);
 assertEq(votesAgainst, 0);

 // voter 3 votes against; threshold is reached and majority is in
favor
 vm.prank(voters[2]);
 vm.expectEmit();
 emit VoteCast(voters[2], 1, 0, 2, 1);
 pollingManagementGroup.castVote(1, 0);
 (votesFor, votesAgainst) =
pollingManagementGroup.getProposalVotes(1);
 assertEq(votesFor, 2);
 assertEq(votesAgainst, 1);

 // move to the end of the voting period
 vm.warp(123 + 3600 + 7200);
 assertEq(uint256(pollingManagementGroup.state(1)), 4);
}

© Coinspect 2025 12 / 12

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

