

© Coinspect 2024 1 / 38

FAsset V2 Updates
Smart Contract Audit

Version: v241217 Prepared for: Flare December 2024

Security Assessment

1. Executive Summary
2. Summary of Findings

2.2 Finding where caution is advised
2.3 Solved issues & recommendations

3. Scope
4. Assessment

Main Changes
Minor Changes
Minor changes after initial review

5. Detailed Findings

© Coinspect 2024 2 / 38

FAS�040 � Collateral pools will spontaneously break
leading to financial losses
FAS�041 � Fee payment bypass by transferring small
amounts of FAssets
FAS�042 � Lack of reinitialization protection in
TransferFeeFacet
FAS�043 � A single compromised or rogue trusted
provider can manipulate the price feed for profit
FAS�044 � Quality of trusted price feeds is not
guaranteed
FAS�045 � Call to arbitrary address without
respecting Check-Effects-Interactions
FAS�046 � FAssets fee distribution incentivizes
agents to be close to liquidation
FAS�047 � Evil minter can lock agent collateral for free
FAS�048 � Banned redeemers targeting agents with
handshake can farm premium fees

6. Disclaimer

© Coinspect 2024 3 / 38

1. Executive Summary
In November, 2024, Flare engaged Coinspect to perform a Smart Contract Audit
of FAsset V2 Protocol. The objective of the project was to evaluate the security of
new features and changes added to the smart contracts.

The FAsset V2 Protocol is a collateralized bridge solution that enables cross-
chain native token transfers.

Solved Caution Advised Resolution Pending

High
2

High
0

High
0

Medium
0

Medium
1

Medium
0

Low
1

Low
0

Low
0

No Risk
5

No Risk
0

No Risk
0

Total

8
Total

1
Total

0

During this assessment, Coinspect identified three high-risk, one medium-risk and
one low-risk issues.

FAS-40 shows how collateral pools are broken and will not work as the FAsset
token now charges a fee upon transfer. FAS-46 mentions that users are
incentivized to increase their debt to get FAsset fees, ultimately lowering the
protocol's global collateral ratio. Lastly, FAS-47 depicts how an evil minter is able
to reserve collateral for free abusing the handshake.

FAS-48 shows a mechanism where evil redeemers could farm redemption
premiums and FAS-41 warns about how users could bypass paying FAsset transfer

https://flare.network/
https://coinspect.com/

© Coinspect 2024 4 / 38

fees.

© Coinspect 2024 5 / 38

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.2 Finding where caution is advised

Issues with risk in this list have been addressed to some extent but not fully
mitigated. Any future changes to the codebase should be carefully evaluated to
avoid exacerbating these issues or increasing their probability.

Findings with a risk of None pose no threat, but document an implicit assumption
which must be taken into account. Once acknowledged, these are considered
solved.

Id Title Risk

FAS�048 Banned redeemers targeting agents with handshake can
farm premium fees Medium

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

FAS�040 Collateral pools will spontaneously break leading to
financial losses High

FAS�047 Evil minter can lock agent collateral for free High

FAS�041 Fee payment bypass by transferring small amounts of
FAssets Low

© Coinspect 2024 6 / 38

FAS�042 Lack of reinitialization protection in TransferFeeFacet None

FAS�043 A single compromised or rogue trusted provider can
manipulate the price feed for profit None

FAS�044 Quality of trusted price feeds is not guaranteed None

FAS�045 Call to arbitrary address without respecting Check-
Effects-Interactions None

FAS�046 FAssets fee distribution incentivizes agents to be close to
liquidation None

© Coinspect 2024 7 / 38

3. Scope
The scope was set to be the repository at https://gitlab.com/flarenetwork/fasset
at commit fcf6ab7b5e4628c6558f7fee736b911945a1ddb0.

Flare requested Coinspect to review two main changes related to new features
added to the protocol:

Handshake: agents are now allowed to reject a minting or redemption request
depending on the requester's identity.
FAsset Token Fee On Transfer� Each FAsset token collects a fee when making
a transfer, which is then distributed among all agents.

Also, a set of smaller, second-priority changes were included alongside the before
mentioned major features.

Coinspect focused on reviewing these changes comparing the previous' review
commit, 997fac606b93f2fac0176f1243f455da44041d4f against the new one.

https://gitlab.com/flarenetwork/fasset

© Coinspect 2024 8 / 38

4. Assessment
During this security assessment, Coinspect reviewed multiple changes added to
the FAsset Protocol. These changes were separated into main and minor changes.

Main Changes

Handshake

The main changes include a new way for agents to determine whether they fulfill a
redemption or minting request based on the requester's identity. This feature is
called Handshake. Agents can require a handhsake and will have to confirm or reject
a request before it is resolved. For minting requests, once a user reserves
collateral the agent should confirm or reject this request. There are three
scenarios:

 Accept: once the request is accepted, the last underlying payment blocks
and timestamps are updated and the minter has to pay in the underlying
chain.

 Reject: if a request is rejected, the minter is able to recover the reservation
fee.

 No agent response: same scenario as 2. but triggered by the minter after a
time-rejection window.

Coinspect identified that this feature allows minters to use accounts with low
reputation to lock an agent's collateral on purpose by knowing in advance they
will reject the request.

In terms of redemptions, the handshake allows agents to reject a redemption
request. Since FAssets are burned from the redeemer once a request is created,
when an agent rejects a redemption there are two possible outcomes:

 Another agent takes over the redemption, proceeding to pay the redeemer in
the underlying chain.

 No agent takes over the redemption, and the redeemer gets paid in collateral
(plus a premium) on Flare Chain. This payment is made by the agent that
rejected the redemption.

© Coinspect 2024 9 / 38

FAsset Token transfer fees

The last main change adds fee-on-transfer functionality to the FAsset token. Now,
when a FAsset is transferred a portion of fees are diverted to a common pool.
This pool is divided across all agents using a share and epoch based mechanism.
Agents with more minted FAssets get more shares thus collected fees.

Coinspect identified that this change encourages agents to reduce their collateral
ratio by increasing the exposure to minted FAssets, for example, while minting
against themselves. Globally, this leads to collateral ratios being reduced and and
introduces a system risk as agents are incentivized to be closer to liquidation.

Minor Changes

Coinspect also reviewed a set of minor changes, comprised by the following
items:

Simplified settings updates. Moved setters from SettingsUpdater to
SettingsManagementFacet.
Removed AMEvents library. Emit events from interface IAssetManagerEvents.
Modified agent's whitelist and owner registry:

The governance can now assign a manager, expected to be a simpler
multisig, to take over whitelisting agents. Coinspect observed that
managers can also be externally owned accounts, creating a single point of
failure.
Agents can optionally add "terms of use" URL.
Agent metadata items can be set separately.

Consecutive redemption tickets to the same agent are merged.
Minting from free underlying logic: when an agent has more than 1 lot of free
underlying, they can mint without underlying payment.
Added new methods to query the state of the redemption queue view.
Changed FAsset termination logic on collateral pools: after a FAsset is
terminated, fees are not paid.
Added support for different recipients when exiting a pool.
Changed the architecture for the Asset Manager Controller, deploying it behind
a proxy.

A note on this last item: Coinspect identified that authorizeUpgrade has no access
control. Access control is at upgradeTo and upgradeToAndCall level. The
authorizeUpgrade function is meant to work as the access control function. In case
of future upgrades unaware of this, removing the modifiers on upgradeTo and
upgradeToAndCall will allow anyone to trigger an update.

Made minor changes to the liquidation logic:

startLiquidation reverts if that liquidation status does not change.

© Coinspect 2024 10 / 38

LiquidationStarted is sent on startLiquidation or first liquidate also if
liquidation started due to CCB time expiration.
LiquidationPerformed event not sent if nothing is liquidated.

Changed the destination of the collateral reservation fee: it is now paid to the
agent and their~ pool on successful minting, instead of burning it.

Modified the Agent's info: available agent info contains liquidation status. This
aims to allow quickly filtering out liquidated agents, that cannot mint.

Self mint gets own event SelfMint.

Reward claiming changed for FTSOv2.

Use of FDC instead of StateConnector to make verifications.

Added a price store contract for publishing FTSOv2 anchor feeds and at the
same time submitting trusted providers' prices.

Converted agent vault, collateral pool and collateral pool token to
upgradeable �UUPS� proxies.

Converted FAsset from transparent to UUPS proxy to align with other proxy
contracts.

Minor changes after initial review

Coinspect reviewed new feature that allows the governance or an allowed
account to pause FAsset transfers. No issues related to this feature were
identified.

The scope for this new feature was set to be the repository at
https://gitlab.com/flarenetwork/fasset at commit
1edeef1b3c8472e205261c51f75eead61145aead.

https://gitlab.com/flarenetwork/fasset

© Coinspect 2024 11 / 38

5. Detailed Findings

FAS�040
Collateral pools will spontaneously break
leading to financial losses

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

fasset/contracts/assetManager/implementation/CollateralPool.sol

Description

Each interaction with the Collateral Pools will result in an FAsset accountancy
discrepancy, where either less is deposited upon entering, too much debt is
canceled during repayment, insufficient assets are available for user exits or
fee withdrawals, or fees are not fully covered. These discrepancies lead to
unexpected reverts and accountancy errors across the Collateral Pools. This
arises from the system's new FAsset implementation introducing transfer fees.

© Coinspect 2024 12 / 38

For an example, consider debt repayment. When entering a Collateral Pool, if
there is a difference between the pool shares and the FAssets provided, debt
is minted to the user:

uint256 tokenShare = _collateralToTokenShare(assetData, msg.value);
uint256 fAssetShare = assetData.poolTokenSupply > 0 ?
 assetData.poolVirtualFAssetFees.mulDiv(tokenShare,
assetData.poolTokenSupply) : 0;
uint256 depositedFAsset = _enterWithFullFAssets ? fAssetShare :
Math.min(_fAssets, fAssetShare);
// transfer/mint calculated assets
if (depositedFAsset > 0) {
 require(fAsset.allowance(msg.sender, address(this)) >=
depositedFAsset,
 "f-asset allowance too small");
 _transferFAsset(msg.sender, address(this), depositedFAsset);
}
_mintFAssetFeeDebt(msg.sender, fAssetShare - depositedFAsset);

Then, when exiting or repaying this debt, the Collateral Pool will burn the debt
in a _fAssets amount:

function payFAssetFeeDebt(uint256 _fAssets)
 external
 nonReentrant
{
 require(_fAssets != 0, "zero f-asset debt payment");
 require(_fAssets <= _fAssetFeeDebtOf[msg.sender], "debt f-asset
balance too small");
 require(fAsset.allowance(msg.sender, address(this)) >= _fAssets,
"f-asset allowance too small");
 _burnFAssetFeeDebt(msg.sender, _fAssets);
 _transferFAsset(msg.sender, address(this), _fAssets);
 // emit event
 emit Entered(msg.sender, 0, 0, _fAssets,
_fAssetFeeDebtOf[msg.sender], 0);
}

function _burnFAssetFeeDebt(address _account, uint256 _fAssets)
 internal
{
 _fAssetFeeDebtOf[_account] -= _fAssets;
 totalFAssetFeeDebt -= _fAssets;
}

However, the amount of FAssets received is less than the parameter's value,
because fees are diverted to other recipient:

function _transferFAsset(
 address _from,
 address _to,
 uint256 _amount
)

© Coinspect 2024 13 / 38

 internal
{
 if (_amount > 0) {
 if (_from == address(this)) {
 totalFAssetFees -= _amount;
 fAsset.safeTransfer(_to, _amount);
 } else { // if (_to == address(this)) {
 /* solhint-disable reentrancy */
 totalFAssetFees += _amount;
 fAsset.safeTransferFrom(_from, _to, _amount);
 }
 }
}

This behavior also triggers accountancy discrepancies and reversals after the
following cases:

 A collateral pool will receive fewer additionallyRequiredFAssets upon
selfClose

 Users might not be able to exit a pool because there may not be enough
FAssets to cover the freeFAssetFeeShare

 The amount of deposited FAssets when entering a pool will be less than
what users are entitled to

 Users might not be able to withdraw fees, for the same reason as in
point 2.

 Debt repayments will receive less FAsset value than the canceled debt
amount

Coinspect considers this issue to have a high likelihood, as FAssets are now a
fee-on-transfer token, enabling multiple accountancy discrepancies in every
Collateral Pool. The impact is also considered high because this issue affects
all Agents, decoupling their FAsset balance from their internal accountancy.

Coinspect observed that the tests for the Collateral Pool use a ERC20Mock
token instead of deploying the actual FAsset with the fee-on-transfer
functionality:

 fAsset = await ERC20Mock.new("fBitcoin", "fBTC");

Recommendation

Handle effective received balances when using the new version of FAsset.
Update those tests that use a ERC20Mock to represent FAssets, using their
actual implementation.

Status

© Coinspect 2024 14 / 38

Fixed on commit 541d4617453434f202ee57b10de1254f61b330b2.

The Collateral Pool smart contract now performs FAsset transfers and internal
accountancy updates considering transfer fees.

Proof of Concept

The following test shows how less FAssets are received by the Collateral Pool
after a user fully repays their debt.

To make this test, a high transfer fee was set �50%� but it will be ultimately
also triggered with high enough FAsset transfer amounts and lower fees.

FAsset Fee Debt Acc 1: 79
- Debt Repaid -
Fasset Balance Diff @ Collateral Pool: 40
FAsset Fee Debt Acc 1: 0

it("Coinspect - Fee of FAssets break CollateralPool accountancy", async
() => {
 // To amplify the impact of fees for small amounts, this test uses
a 50% of fee.
 // However, this scenario will happen for every FAsset interaction
with a Collateral Pool
 const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
 const minter = await Minter.createTest(context, userAddress1,
underlyingUser1, context.lotSize().muln(100));
 await agent.depositCollateralsAndMakeAvailable(toWei(1e8),
toWei(1e8));
 mockChain.mine(10);
 await context.updateUnderlyingBlock();
 // settings
 const lotSize = context.lotSize();
 const transferFeeMillionths = await
assetManager.transferFeeMillionths();
 const eventDecoder = new Web3EventDecoder({ fAsset: context.fAsset
})
 // perform minting
 const lots = 10;
 const [minted] = await minter.performMinting(agent.vaultAddress,
lots);
 const transfer1LotFee =
lotSize.mul(transferFeeMillionths).divn(1e6);

 // transfer
 const startBalance1 = await fAsset.balanceOf(minter.address);
 const res1 = await fAsset.transfer(userAddress2, lotSize, { from:
minter.address });
 const res2 = await fAsset.transfer(userAddress3, lotSize, { from:
minter.address });

 const ONE_ETH = toBN("1000000000000000000");

© Coinspect 2024 15 / 38

 const ETH = (x: any) => ONE_ETH.mul(toBN(x));

 await context.fAsset.approve(agent.collateralPool.address, ETH(10),
{ from: userAddress2 });
 await agent.collateralPool.enter(0, true, {value: ETH(10), from:
userAddress2})

 await context.fAsset.approve(agent.collateralPool.address, ETH(1),
{ from: userAddress3 });
 await agent.collateralPool.enter(ETH(0), false, { value: ETH(100),
from: userAddress3 });

 // Account 1 tries to repay the fasset fee debt
 let ac1FassetFeeDebt = await
agent.collateralPool.fAssetFeeDebtOf(userAddress3)
 console.log(`FAsset Fee Debt Acc 1: ${Number(ac1FassetFeeDebt)}`);

 const balanceBefore = await
context.fAsset.balanceOf(agent.collateralPool.address);
 await agent.collateralPool.payFAssetFeeDebt(ac1FassetFeeDebt, {
from: userAddress3 });
 const balanceAfter = await
context.fAsset.balanceOf(agent.collateralPool.address);
 console.log("- Debt Repaid -")
 console.log(`Fasset Balance Diff @ Collateral Pool:
${Number(balanceAfter.sub(balanceBefore))}`)
 console.log(`FAsset Fee Debt Acc 1: ${Number(await
agent.collateralPool.fAssetFeeDebtOf(userAddress3))}`);
});

© Coinspect 2024 16 / 38

FAS�041
Fee payment bypass by transferring small
amounts of FAssets

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

fasset/contracts/fassetToken/implementation/FAsset.sol:352

Description

Adversaries are able to bypass paying fees by making FAsset transfers of low
amounts.

The incentives to bypass the fee payment are related to the network
congestion, the asset's price and decimals. For example, in an uncongested
network adversaries will be incentivized to perform small transfers of fBTC.
This incentive grows if the price of BTC rises (price of BTC at the time of this
review, $99,000�.

This happens because the fee calculation floors down:

function _transferFeeAmount(uint256 _transferAmount)
 private view
 returns (uint256)

© Coinspect 2024 17 / 38

{
 uint256 feeMillionths =
IIAssetManager(assetManager).transferFeeMillionths();
 return SafePct.mulDiv(_transferAmount, feeMillionths, 1e6);
}

Attackers can easily calculate the maximum amount to transfer so they do not
pay any fees:

amt = (1e6 / currentFee) - 1

In other words, for lower fees the maximum transfer amount that bypasses
fee payment grows. At most, the maximum amount is 1e6 - 1, that happens
when currentFeeMillonths = 1. Considering a FAsset of 8 decimals (fBTC) this
amount represents almost 0.01 fBTC, $990 at current market prices.

Recommendation

Make and document a fee adjustment plan to reduce the profitability of
making small FAsset transfers.

Status

Fixed on commit 541d4617453434f202ee57b10de1254f61b330b2.

Calculation of transfer fees now rounds up.

Proof of Concept

The following test show how an user bypasses paying fees by making a small
fBTC transfer.

it("Coinspect - Bypass paying transfer fees", async () => {
 const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
 const minter = await Minter.createTest(context, userAddress1,
underlyingUser1, context.lotSize().muln(100));
 const redeemer = await Redeemer.create(context, userAddress2,
underlyingUser2);
 const agentInfo = await agent.getAgentInfo();
 await agent.depositCollateralsAndMakeAvailable(toWei(1e8),
toWei(1e8));
 mockChain.mine(10);
 await context.updateUnderlyingBlock();

© Coinspect 2024 18 / 38

 const currentEpoch = await assetManager.currentTransferFeeEpoch();
 const trfSettings = await assetManager.transferFeeSettings();
 // perform minting
 const lots = 3;
 const [minted] = await minter.performMinting(agent.vaultAddress,
lots);

 // transfer just one token less than 1e6/fee to trigger the integer
division.
 const transferAmount =
toBN(1e6).div(toBN(trfSettings.transferFeeMillionths)).sub(toBN(1));
 const transferFee =
transferAmount.mul(toBN(trfSettings.transferFeeMillionths)).divn(1e6);

 console.log(`Transfer Fee: ${Number(transferFee)}`);
 console.log(`Transfer Amt: ${Number(transferAmount)}`);

 const startBalanceM = await fAsset.balanceOf(minter.address);
 const startBalanceR = await fAsset.balanceOf(redeemer.address);
 const startBalanceAM = await
fAsset.balanceOf(assetManager.address);

 const transfer = await minter.transferFAsset(redeemer.address,
transferAmount);
 const endBalanceM = await fAsset.balanceOf(minter.address);
 const endBalanceR = await fAsset.balanceOf(redeemer.address);
 const endBalanceAM = await fAsset.balanceOf(assetManager.address);

 assertWeb3Equal(endBalanceAM, startBalanceAM); // No Fassets were
sent to the AssetManager
});

© Coinspect 2024 19 / 38

FAS�042
Lack of reinitialization protection in
TransferFeeFacet

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset/contracts/assetManager/facets/TransferFeeFacet.sol:36

Description

The TransferFeeFacet includes initialization logic invoked only when adding
this facet by calling diamondCut(). Although this function is not added to the
proxy's supported selectors, anyone is able to invoke it by directly calling the
TransferFeeFacet contract.

 function initTransferFeeFacet(
 uint256 _transferFeeMillionths,
 uint256 _firstEpochStartTs,
 uint256 _epochDuration,
 uint256 _maxUnexpiredEpochs
)
 external
 {
 LibDiamond.DiamondStorage storage ds =
LibDiamond.diamondStorage();

© Coinspect 2024 20 / 38

 require(ds.supportedInterfaces[type(IERC165).interfaceId],
"diamond not initialized");
 ds.supportedInterfaces[type(ITransferFees).interfaceId] = true;
 // init settings
 require(_transferFeeMillionths <= 1e6, "millionths value too
high");

TransferFees.updateTransferFeeMillionths(_transferFeeMillionths, 0);
 TransferFeeTracking.Data storage data = _getTransferFeeData();
 data.initialize(_firstEpochStartTs.toUint64(),
_epochDuration.toUint64(), _maxUnexpiredEpochs.toUint64());
 }

This has no impact since the altered storage will not be the proxy's, but the
implementation's. However, if the code is reused in a different context it could
be possible to call initTransferFeeFacet multiple times.

Coinspect made a proof of concept to verify that this function is not exposed
by the Diamond Proxy, which would allow anyone to modify the fee and
epoch parameters at anytime:

it("Coinspect - Cannot Manipulate Transfer fee by reinitializing
TransferFeeFacet", async () => {
 // const payload =
context.assetManager.contract.methods.initTransferFeeFacet(10, 100, 1,
10).encodeABI();
 const payload =
"0xb706b3cc000

00000000000000a00
00000

06400010000
00000
 00a"

 await expectRevert(web3.eth.sendTransaction({data: payload, from:
agentOwner1, to: context.assetManager.address }),
`FunctionNotFound("0xb706b3cc")`);
});

Recommendation

Prevent multiple calls to initTransferFeeFacet. Additionally, disable it from the
implementation.

Status

Fixed on commit aac7275bcb5479aa9f502074226cb0b5a99d786e.

© Coinspect 2024 21 / 38

The mentioned smart contracts now include reinitialization protection.

© Coinspect 2024 22 / 38

FAS�043
A single compromised or rogue trusted
provider can manipulate the price feed for
profit

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset/contracts/assetManager/implementation/FtsoV2PriceStore.sol:344

Description

Adversaries compromising only a single provider are allowed to report and
control the trusted price between a range, allowing them to take profits by
trading tied assets.

The implementation for FTSOV2PriceStore calculates the median for the prices
reported for a feed. When the amount of reported values is even, the average
of the two values in the middle is used as the epoch's trusted price:

 uint256 middleIndex = length / 2;
 if (length % 2 == 1) {
 return prices[middleIndex];
 } else {

© Coinspect 2024 23 / 38

 // if median is "in the middle", take the average price of the
two consecutive prices
 return (prices[middleIndex - 1] + prices[middleIndex]) / 2;
 }

However, when the amount of reported prices is odd, the returned median is
in the center of the ordered list of prices. This allows an attacker
compromising a single provider to report any price between
prices[middleIndex - 1] and prices[middleIndex + 1].

Consider the following scenario:

Three trusted providers are registered, O1, O2 and O3.
Two of them report some prices: �1000, 1200�
Then, the remaining oracle can decide to report any price between the
already reported prices (e.g. 1001, 1099, 1199, etc) and take profits
elsewhere.

This issue is informational only as users of the price oracle are expected to
query both the trusted and non-trusted prices and compare between the two,
taking reasonable action if a considerable deviation is encountered.

Recommendation

Design and include a monitoring plan to detect anomalies in trusted providers,
which will allow the Governance to quickly remove the rogue/compromised
provider from the trusted list.

Status

Fixed on commit aac7275bcb5479aa9f502074226cb0b5a99d786e.

A variable called maxSpreadBIPS was added. Trusted prices are now only
updated if the spread between the two middle prices is less than the
accepted value.

Proof of Concept

The following test shows how a rogue/compromised provider is able to
decide the price of a feed between a range.

it("Coinspect - Submissions with high deviation allow a single oracle
to manipulate the price feed", async () => {

© Coinspect 2024 24 / 38

 const newTrustedProviders = [accounts[1], accounts[2],
accounts[3]];
 await priceStore.setTrustedProviders(newTrustedProviders, 2, {
from: governance });

 await time.increaseTo(startTs + 2 * votingEpochDurationSeconds); //
start of voting round 2
 const feeds0 = [];
 const feeds1 = [];
 const feeds2 = [];

 for (let i = 0; i < feedIds.length; i++) {
 feeds0.push({ id: feedIds[i], value: 10000, decimals:
feedDecimals[i] });
 feeds1.push({ id: feedIds[i], value: 10215, decimals:
feedDecimals[i] }); // Rogue provider's price
 feeds2.push({ id: feedIds[i], value: 11000, decimals:
feedDecimals[i] });
 }

 await priceStore.submitTrustedPrices(1, feeds0, { from:
newTrustedProviders[0] });
 await priceStore.submitTrustedPrices(1, feeds1, { from:
newTrustedProviders[1] }); // Rogue provider
 await priceStore.submitTrustedPrices(1, feeds2, { from:
newTrustedProviders[2] });

 await publishPrices();

 const { 0: price, 1: timestamp, 2: decimals } = await
priceStore.getPriceFromTrustedProviders("USDC");
 // price will be 10215, submitted by accounts[2] (no average is
made)
 // only one compromised oracle is able to report a price between
[Oracle min - Oracle Max]
 assertWeb3Equal(price, 10215);
});

© Coinspect 2024 25 / 38

FAS�044
Quality of trusted price feeds is not
guaranteed

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset/contracts/assetManager/implementation/FtsoV2PriceStore.sol

Description

Users cannot determine the quality of a median price over time since the
submission threshold might change in the future.

The new price feed allows the governance to set any
trustedProvidersThreshold for the submission of trusted prices, even zero. In
other words, users are expected to trust that all providers are not faulty at
anytime. This assumption can be broken if only one trusted provider gets
compromised or goes rogue.

 function setTrustedProviders(
 address[] calldata _trustedProviders,
 uint8 _trustedProvidersThreshold
)
 external onlyGovernance

© Coinspect 2024 26 / 38

 {
 require(_trustedProviders.length >= _trustedProvidersThreshold,
"threshold too high");
 trustedProvidersThreshold = _trustedProvidersThreshold;
 // reset all trusted providers
 for (uint256 i = 0; i < trustedProviders.length; i++) {
 trustedProvidersMap[trustedProviders[i]] = false;
 }
 // set new trusted providers
 trustedProviders = _trustedProviders;
 for (uint256 i = 0; i < _trustedProviders.length; i++) {
 trustedProvidersMap[_trustedProviders[i]] = true;
 }
 }

The threshold can be changed by the governance at anytime and stored
prices are untied to that threshold. This means that the quality of a published
price for an epoch where the threshold was 1 is treated the same as another
one where the threshold was 20.

if (trustedPrices.length > 0 && trustedPrices.length >= 4 *
trustedProvidersThreshold) {
 // calculate median price
 uint256 medianPrice = _calculateMedian(trustedPrices);
 // store the median price
 priceStore.trustedVotingRoundId = votingRoundId;
 priceStore.trustedValue = uint32(medianPrice);
 // delete submitted trusted prices
 delete submittedTrustedPrices[feedId][votingRoundId];
}

Recommendation

Store the threshold on each latestPrices feed and return it when querying
trusted prices. This way, consumers will be able to determine if the current
threshold is safe according to their threat model.

Status

Fixed on commit aac7275bcb5479aa9f502074226cb0b5a99d786e.

A new function that returns the amount of trusted submissions alongside a
price was added.

© Coinspect 2024 27 / 38

FAS�045
Call to arbitrary address without
respecting Check-Effects-Interactions

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset/contracts/assetManager/library/CollateralReservations.sol

Description

A call is made to the arbitrary minter address on a CollateralReservation
when the collateral reservation is rejected or cancelled in
_rejectOrCancelCollateralReservation without the Checks-Effects-
Interactions pattern.

The logic is not currently affected by reentrancy issues as the callers employ
the nonReentrant modifier. Nevertheless, the patter is useful to avoid issues
even in the case of changes in the caller's logic.

 function _rejectOrCancelCollateralReservation(
 CollateralReservation.Data storage crt,
 uint64 _crtId
)
 private

© Coinspect 2024 28 / 38

 {
 uint256 totalFee = crt.reservationFeeNatWei +
crt.executorFeeNatGWei * Conversion.GWEI;

 // guarded against reentrancy in CollateralReservationsFacet
 /* solhint-disable avoid-low-level-calls */
 //slither-disable-next-line arbitrary-send-eth
 (bool success,) = crt.minter.call{value: totalFee, gas:
100000}("");
 /* solhint-enable avoid-low-level-calls */
 if (!success) {
 // if failed, burn the fee
 Agents.burnDirectNAT(totalFee);
 }

 // release agent's reserved collateral
 releaseCollateralReservation(crt, _crtId); // crt can't be
used after this
 }

Recommendation

Implement the checks-effects-interaction pattern by first releasing the
collateral and then making the arbitrary call.

Status

Fixed on commit 7cb3e370751883ec55543c34c41a82d2b7683275.

The smart contract now releases the collateral reservation before making the
external call.

© Coinspect 2024 29 / 38

FAS�046
FAssets fee distribution incentivizes
agents to be close to liquidation

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

fasset/contracts/assetManager/library/data/TransferFeeTracking.sol:140

Description

Agents are incentivized to increase their exposure to minted FAssets,
reducing the system's total collateral ratio and increasing the risk of
liquidation.

When a FAsset is transferred, a percentage representing fees is diverted and
accumulated in a pool. Then, agents are able to claim those fees based on
their share:

function claimFees(Data storage _data, address _agentVault, uint256
_maxClaimEpochs)
 internal
 returns (uint256 _claimedFees, uint256 _remainingUnclaimedEpochs)
{
 AgentData storage agent = _data.agents[_agentVault];

© Coinspect 2024 30 / 38

 uint256 currentEpochNo = currentEpoch(_data);
 uint256 firstUnclaimedEpoch = Math.max(agent.firstUnclaimedEpoch,
_data.firstClaimableEpoch);
 uint256 claimUntilEpoch = Math.min(currentEpochNo,
firstUnclaimedEpoch + _maxClaimEpochs);
 _claimedFees = 0;
 for (uint256 epoch = firstUnclaimedEpoch; epoch < claimUntilEpoch;
epoch++) {
 uint256 feeShare = agentFeeShare(_data, agent, epoch);
 _claimedFees += feeShare;
 _data.epochs[epoch].claimedFees += feeShare.toUint128();
 }
 agent.firstUnclaimedEpoch = claimUntilEpoch.toUint64();
 _remainingUnclaimedEpochs = currentEpochNo - claimUntilEpoch;
}

This share is calculated considering the minting exposure at the claiming
epoch:

function agentFeeShare(Data storage _data, AgentData storage _agent,
uint256 _epoch)
 internal view
 returns (uint256)
{
 ClaimEpoch storage claimEpoch = _data.epochs[_epoch];
 uint256 agentCumulativeMinted = epochCumulative(_data,
_agent.mintingHistory, _epoch);
 uint256 totalCumulativeMinted = epochCumulative(_data,
_data.totalMintingHistory, _epoch);
 assert(agentCumulativeMinted <= totalCumulativeMinted);
 if (agentCumulativeMinted == 0) return 0;
 return SafePct.mulDiv(claimEpoch.totalFees, agentCumulativeMinted,
totalCumulativeMinted);
}

This way of calculating shares drives the protocol to a risky state since
agents will be minting more FAssets, increasing their shares but decreasing
their collateral ratio. In case of a sudden price swing, multiple agents will go
underwater and there might not be enough liquidators to liquidate all agents
in time.

Recommendation

Checkpoint the agent's total collateral and use it to determine each agent's
shares. This way, agents will be incentivized to increase their position in the
FAsset protocol and avoids rewarding risky behavior.

Status

© Coinspect 2024 31 / 38

Acknowledged.

The Flare Team considered the recommendation of this issue and made a
thorough analysis on which parameter should be use to calculate the portion
of rewards:

"The choice of using agent's backing of minted FAssets to calculate the
transfer fee share was deliberate.
We wanted to compensate the agents for the locked collateral,
especially if there are not enough redemptions -
in such a case, the agent's collateral is locked indefinitely, with no
possibility to earn more minting fees.

If we switched to total amount of agent's collateral for calculating
the fee share, an agent could put up huge
amount of collateral and set huge minting CR (e.g. 10000 instead of
usual single digit value). Such an agent
could not be minted against, since the collateral wouldn't be enough
for even 1 lot, but would still collect
the majority of transfer fees. (Another way would be to have normal
minting CR but set minting fee to 100%.)
Such an agent would also not be locked into the system, as they could
withdraw the collateral at any time
(after timelock), and they would carry no risk of liquidation. Every
rational agent would soon switch to this
mode of operation as it provides income with no risk, which would make
minting impossible.

Moreover, we also don't believe that implemented transfer fee sharing
increases the risk to the system: agents are
incentivized to avoid liquidations by the threat of liquidation payment
premium, which is significantly higher than
the transfer fee. Possibility of liquidation is the risk for the agent
- they need to set their minting CR by
weighing better return on capital versus higher risk of liquidation
premium payments. (Besides, minting fees were
also based on the amount of backed minting, not the amount of
collateral, so nothing has really changed in this
regard.)"

In addition to that, Coinspect also considers that incentives should be
carefully monitored as there could be a scenario where the collection of
transfer fees exceeds what it's lost due to liquidation premiums. For example,
a liquid market that has a high volume of daily FAsset transfers. Incentives
should be carefully aligned by fine-tunning the transfer fee ratio to prevent
experiencing a collateral ratio reduction via the mechanism mentioned on this
issue.

© Coinspect 2024 32 / 38

FAS�047
Evil minter can lock agent collateral for free

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Description

A minter with a low reputable account is able to reduce an agent's collateral
availability knowing in advance that their request will be rejected.

When a user performs a collateral reservation request, the required agent's
collateral to back the positions is locked until the request is resolved. In
exchange, the minter pays a reservation fee. By adding the handshake, Agents
are now allowed to reject a minting request, which transfers the fee back to
the minter.

Minters that know that their request will be rejected can abuse the system to
make minting reservation requests that are going to be denied. This way, they
lock the agent's collateral for some time. When the minting is rejected, they
will get the fee they paid for back, making the cost of the attack negligible.
Minters can execute the attack as many time as they want, making the lock
permanent.

An attacker willing to exploit this issue can force an address to be denied
service by an agent that uses handshake by investigating the properties that
an agent uses to decide whether to reject or accept request. It is likely most

© Coinspect 2024 33 / 38

handshake users will have certain easily achieved conditions to deny service,
for example, denying service to accounts that have interacted with a
sanctioned services.

Note that after the agent rejects the collateral reservation, the locked
collateral is released and the minter receives the fee back. The attacker would
even get an small amount of gas to execute arbitrary actions:

function _rejectOrCancelCollateralReservation(
 CollateralReservation.Data storage crt,
 uint64 _crtId
)
 private
{
 uint256 totalFee = crt.reservationFeeNatWei +
crt.executorFeeNatGWei * Conversion.GWEI;

 // guarded against reentrancy in CollateralReservationsFacet
 /* solhint-disable avoid-low-level-calls */
 //slither-disable-next-line arbitrary-send-eth
 (bool success,) = crt.minter.call{value: totalFee, gas: 100000}
("");
 /* solhint-enable avoid-low-level-calls */
 if (!success) {
 // if failed, burn the fee
 Agents.burnDirectNAT(totalFee);
 }

 // release agent's reserved collateral
 releaseCollateralReservation(crt, _crtId); // crt can't be used
after this
}

The opportunity cost of the evil minter can be defined as it follows:

opportunityCost = collateral reservation fee * time until rejection +
txGas * gasPrice @ reservation - 100k * gasPrice @ rejection

For each agent, this cost can be expressed as:

opportunityCost = lockedCollateral * time until rejection + (txGas +
100k) * gasPrice @ rejection

It can be seen that the opportunity cost for each agent enforcing a handshake
is considerably higher because they:

Get all the position's collateral locked
They subsidize up to 100k of gas at the minter's context when performing
the rejection

Coinspect considers the likelihood of this issue to be high since any minter is
able to get a banned address and trigger evil collateral reservation requests.

© Coinspect 2024 34 / 38

The impact is high since the evil minter can repeat this process indefinitely as
they receive the reservation fee back.

Recommendation

Rejected mintings should not return the fee to requesters.

To avoid the risk of honest minters being denied service and loosing their fee,
the system needs to allow agents to commit to a mint operation before the
collateral is reserved.

The handshake would work like this:

 Minter provides information on mint operation to agent
 Agent commits to providing or rejecting mint operation
 Minter pays collateral reservation fee and reserves the collateral
 Agent needs to reject or accept according to the previous commitment

If the agent rejects, no fee is returned: the minter had the necessary
information to make a correct decision. If the agent accepts, the process
continues as normal.

Status

Fixed on commit 9ba17bbc9d414b0ce74dbe3d7d4b68182944a2f2.

The Flare Team implemented a fix that allows setting a burn percentage of the
reservation fee after a rejection. This way, attackers will lose a portion of the
reservation fee. Moreover, agents are not incentivized to continuously
perform a rejection for no reason as they will not increase their utilization
rate, which then traduces in more transfer fees received due to FAsset
transfers.

© Coinspect 2024 35 / 38

FAS�048
Banned redeemers targeting agents with
handshake can farm premium fees

Status

Caution Advised

Resolution

Partially Fixed

Risk
Medium

Impact
High
Likelihood
Low

Description

Redeemers using a low reputable or banned address are able to target an
agent that requires handshake as an attempt to receive more collateral
because the system compensates them with a premium. When a user requests
a redemption, if an agent rejects the request and no other agent performs the
takeover after some time, the redeemer receives the equivalent in collateral
plus a premium.

Similarly to FAS�046, a user not willing to receive any funds on the underlying
chain and wanting to get collateral, might use a banned or blacklisteable
account. Then, by requesting a redemption with that account or exiting the
pool of an agent requiring handshake, they can receive the equivalent of the
burned FAssets in collateral plus a premium.

bool isRejection = _request.rejectionTimestamp != 0;
_vaultCollateralWei =
Conversion.convertAmgToTokenWei(_request.valueAMG,
cdAgent.amgToTokenWeiPrice)

© Coinspect 2024 36 / 38

 .mulBips(isRejection ?
settings.rejectedRedemptionDefaultFactorVaultCollateralBIPS :
 settings.redemptionDefaultFactorVaultCollateralBIPS);
// calculate paid amount and max available amount from the pool
Collateral.Data memory cdPool =
AgentCollateral.poolCollateralData(_agent);
_poolWei = Conversion.convertAmgToTokenWei(_request.valueAMG,
cdPool.amgToTokenWeiPrice)
 .mulBips(isRejection ?
settings.rejectedRedemptionDefaultFactorPoolBIPS :
 settings.redemptionDefaultFactorPoolBIPS);
uint256 maxPoolWei = cdPool.maxRedemptionCollateral(_agent,
_request.valueAMG);
// if there is not enough collateral held by agent, pay more from the
pool
if (_vaultCollateralWei > maxVaultCollateralWei) {
 uint256 extraPoolAmg =
 _request.valueAMG.mulDivRoundUp(_vaultCollateralWei -
maxVaultCollateralWei, _vaultCollateralWei);
 _poolWei += Conversion.convertAmgToTokenWei(extraPoolAmg,
cdPool.amgToTokenWeiPrice);
 _vaultCollateralWei = maxVaultCollateralWei;
}

This operation reduces the collateral ratio of the agent that rejected the
request since they are obliged to back the burned FAssets with even more
collateral (backed value + premium). Also, the reason that derived into the
rejection (e.g. the redeemer interacted with Tornado Cash) could be enough
to stop other agents to take that request over, potentially driving the system
to a critical collateral ratio if the redeemer decides to repeat this process.

Coinspect considers the likelihood to be low since it assumes that no other
agent takes over the request. The impact is high as the redeemer can repeat
this process multiple times, stealing premiums and reducing the agents'
collateral ratio.

Recommendation

See the fix for issue FAS-046. The same fix would mitigate this risk, as rejected
addresses should not receive any premium.

Status

Partially Fixed.

The Flare Team stated:

The premium for handshake rejection is a separate setting and is
supposed to be much lower than the premium for

© Coinspect 2024 37 / 38

ordinary redemption default (currently it is just 0.1% in production
parameters, but we may even set it to 0).
We added the option of premium to disincentivize the agents from
rejecting valid redemption in order to profit
from price fluctuations.

Coinspect considers this issue as partially fixed since it is a decision that
requires constant monitoring to ensure that incentives are aligned. A small
misalignment between several factors such as the premium values, and
current market conditions could make the issue exploitable and adversaries
may still take advantage from it.

© Coinspect 2024 38 / 38

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

