
Security Code Review
FLARE Data Availability

FLARE

November 2024
Version 1.0

Presented by:
FYEO Inc.
PO Box 147044
Lakewood CO 80214
United States

Security Level
Public

TABLE OF CONTENTS
Executive Summary...2

Overview..2
Key Findings..2
Scope and Rules of Engagement..3

Technical Analyses and Findings.. 6
Findings... 7
Technical Analysis... 7
Conclusion...7

Technical Findings...8
General Observations..8
Multiple vulnerabilities in outdated version of Django..9
Package djangorestframework before 3.15.2 is vulnerable to Cross-Site Scripting..........................10
Incomplete code.. 11
Inconsistent logging...13
Setup defaults to None.. 14
Missing documentation of unit tests.. 15

Our Process...16
Methodology.. 16
Kickoff..16
Ramp-up..16
Review...17
Code Safety...17
Technical Specification Matching...17
Reporting... 18
Verify..18

Additional Note.. 18
The Classification of vulnerabilities... 19

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Executive Summary
Overview
FLARE engaged FYEO Inc. to perform a Security Code Review of FLARE Data Availability.

The assessment was conducted remotely by the FYEO Security Team. Testing took place on October 26
- November 04, 2024, and focused on the following objectives:

• To provide the customer with an assessment of their overall security posture and any risks
that were discovered within the environment during the engagement.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures that are in place.

• To identify potential issues and include improvement recommendations based on the results
of our tests.

This report summarizes the engagement, tests performed, and findings. It also contains detailed
descriptions of the discovered vulnerabilities, steps the FYEO Security Team took to identify and validate
each issue, as well as any applicable recommendations for remediation.

Key Findings
The following issues have been identified during the testing period. These should be prioritized for
remediation to reduce the risk they pose:

• FYEO-FLARE-01 – Multiple vulnerabilities in outdated version of Django

• FYEO-FLARE-02 – Package djangorestframework before 3.15.2 is vulnerable to Cross-Site
Scripting

• FYEO-FLARE-03 – Incomplete code

• FYEO-FLARE-04 – Inconsistent logging

• FYEO-FLARE-05 – Setup defaults to None

• FYEO-FLARE-06 – Missing documentation of unit tests

Based on our review process, we conclude that the reviewed code implements the documented
functionality.

2

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Scope and Rules of Engagement
The FYEO Review Team performed a Security Code Review FLARE Data Availability. The following table
documents the targets in scope for the engagement. No additional systems or resources were in scope
for this assessment.

The source code was supplied through a private repository at
https://gitlab.com/flarenetwork/FSP/data-availability with the commit hash
9199fb40d10a860b32a55753d351270e9be65df5.

Remediations were submitted with the commit hash 6e5c7da422d1a07bba01dd2db5f5e078bbe89906.

Files included in the code review
data-availability/
├── configuration/
│ ├── configs/
│ │ ├── __init__.py
│ │ ├── coston.py
│ │ ├── coston2.py
│ │ ├── flare.py
│ │ └── songbird.py
│ ├── __init__.py
│ ├── config.py
│ ├── contract_types.py
│ └── types.py
├── fdc/
│ ├── management/
│ │ ├── commands/
│ │ │ ├── __init__.py
│ │ │ └── process_fdc_data.py
│ │ └── __init__.py
│ ├── migrations/
│ │ ├── 0001_initial.py
│ │ └── __init__.py
│ ├── serializers/
│ │ ├── data.py
│ │ ├── query.py
│ │ └── request.py
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── models.py
│ ├── urls.py
│ └── views.py

3

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Files included in the code review
├── fsp/
│ ├── migrations/
│ │ ├── 0001_initial.py
│ │ └── __init__.py
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── epoch.py
│ ├── models.py
│ ├── serializers.py
│ ├── tests.py
│ ├── urls.py
│ └── views.py
├── ftso/
│ ├── management/
│ │ ├── commands/
│ │ │ ├── __init__.py
│ │ │ └── process_ftso_data.py
│ │ └── __init__.py
│ ├── migrations/
│ │ ├── 0001_initial.py
│ │ └── __init__.py
│ ├── serializers/
│ │ ├── data.py
│ │ ├── query.py
│ │ └── request.py
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── models.py
│ ├── urls.py
│ └── views.py
├── processing/
│ ├── client/
│ │ ├── main.py
│ │ └── types.py
│ ├── __init__.py
│ ├── fdc_processing.py
│ ├── ftso_processing.py
│ ├── main.py
│ ├── processing.py
│ └── utils.py
├── project/

4

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Files included in the code review
│ ├── settings/
│ │ ├── __init__.py
│ │ ├── ci_testing.py
│ │ ├── common.py
│ │ ├── local.py
│ │ └── remote.py
│ ├── __init__.py
│ ├── asgi.py
│ ├── urls.py
│ └── wsgi.py
└── manage.py

Table 1: Scope

5

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Technical Analyses and Findings
During the Security Code Review FLARE Data Availability, we discovered:

• 2 findings with MEDIUM severity rating.

• 3 findings with LOW severity rating.

• 1 finding with INFORMATIONAL severity rating.

The following chart displays the findings by severity.

Figure 1: Findings by Severity

6

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Findings
The Findings section provides detailed information on each of the findings, including methods of
discovery, explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Finding # Severity Description

FYEO-FLARE-01 Medium Multiple vulnerabilities in outdated version of Django

FYEO-FLARE-02 Medium Package djangorestframework before 3.15.2 is
vulnerable to Cross-Site Scripting

FYEO-FLARE-03 Low Incomplete code

FYEO-FLARE-04 Low Inconsistent logging

FYEO-FLARE-05 Low Setup defaults to None

FYEO-FLARE-06 Informational Missing documentation of unit tests

Table 2: Findings Overview

Technical Analysis
The source code has been manually validated to the extent that the state of the repository allowed. The
validation includes confirming that the code correctly implements the intended functionality.

Conclusion
Based on our review process, we conclude that the code implements the documented functionality to the
extent of the reviewed code.

7

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Technical Findings
General Observations
The Data Availability service is a Django application for handling and validating attestations and feed data
tied to the Flare blockchain, focusing on cryptographic validation using Merkle trees. The service
interfaces with external data sources through API clients, fetches data related to specific voting rounds,
and uses Merkle tree structures to ensure the data’s integrity before persisting it in a relational database.

The main logic revolves around the AttestationResult and FeedResult models, which store data about
blockchain voting rounds, feeds, and associated attestation results. Each record in these models
represents a verified attestation, containing fields like voting_round_id, cryptographic proofs, and
serialized data about voting results. The AttestationResult model supports cryptographic verification by
calculating and storing keccak hashes of each attestation, making it possible to verify data authenticity
through Merkle proofs. The FeedResult model manages feeds associated with voting rounds, includes
voting outcomes, turnout, and other metadata. For every feed, the model computes its hash based on
Ethereum’s ABI encoding scheme.

The service’s API layer exposes data endpoints via Django REST Framework viewsets, allowing clients to
retrieve attestation and feed results through GET and POST endpoints. Users can request feeds by voting
round or obtain Merkle proofs for specified feeds. Each view validates incoming requests, which enforces
schema integrity for requests and responses.

The Merkle tree structure is critical for data integrity. When processing attestations or feed data, the
service organizes relevant records into a Merkle tree and compares its root hash with known values from
external data sources or previous rounds. This comparison ensures that the data stored and served
remains consistent with the data on-chain. If mismatches occur, such as differences in Merkle root
hashes, the service raises errors to indicate potential data corruption.

Overall, this Django service provides a robust backend for blockchain data attestation, verifying data
integrity with Merkle tree structures and offering an API layer for efficient access and integration into
broader decentralized systems. It was noted however, that the service seems to have been rushed to the
finish line. Error handling as well as logging, testing and overall documentation are lacking and more effort
invested in these would greatly contribute to a more maintainable and secure codebase.

8

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Multiple vulnerabilities in outdated version of Django
Finding ID: FYEO-FLARE-01
Severity: Medium
Status: Remediated

Description

The package django before version 5.0.9 is subject to multiple vulnerabilities.

Proof of Issue

File name: requirements.txt
Line number: 2
Found 11 known vulnerabilities in 2 packages Name Version ID
Fix Versions ------------------- ------- ------------------- ------------------ django
5.0.6 PYSEC-2024-58 4.2.14,5.0.7 django 5.0.6 PYSEC-2024-57
4.2.14,5.0.7 django 5.0.6 PYSEC-2024-56 4.2.14,5.0.7 django
5.0.6 PYSEC-2024-59 4.2.14,5.0.7 django 5.0.6 PYSEC-2024-69
4.2.15,5.0.8 django 5.0.6 PYSEC-2024-70 4.2.15,5.0.8 django
5.0.6 PYSEC-2024-68 4.2.15,5.0.8 django 5.0.6 PYSEC-2024-67
4.2.15,5.0.8 django 5.0.6 PYSEC-2024-102 4.2.16,5.0.9,5.1.1 django
5.0.6 GHSA-rrqc-c2jx-6jgv 4.2.16,5.0.9,5.1.1

Severity and Impact Summary

Even though most of these vulnerabilities are in the web rendering and template stack of Django some of
them could still be exploited leading to unexpected behavior and potentially lead to a denial of service
situation for the web service.

Recommendation

Please upgrade the package to the latest version of the Django framework.

9

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Package djangorestframework before 3.15.2 is vulnerable to Cross-Site
Scripting
Finding ID: FYEO-FLARE-02
Severity: Medium
Status: Remediated

Description

The package djangorestframework before 3.15.2 is vulnerable to Cross-site Scripting (XSS) via the
break_long_headers template filter due to improper input sanitation before splitting and joining with tags.

Proof of Issue

File name: requirements.txt
Line number: 12

Severity and Impact Summary

This could lead to cross site scripting and reflective injection of code in the responses.

Recommendation

Please upgrade the package to at least 3.15.2.

10

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Incomplete code
Finding ID: FYEO-FLARE-03
Severity: Low
Status: Remediated

Description

The codebase appears unfinished in many places and the handling of errors and edge cases is lacking,
which could lead to unexpected behavior.

Proof of Issue

File name: processing/main.py
Line number: 29

def __init__(self, rpc_url: str, sync_config: SyncingConfig, relay: Contract):
relay = relay
assert relay is not None and relay.address is not None

The assignment does nothing.

File name: fsp/models.py
Line number: 40

def from_decoded_dict(cls, event_data: EventData, state):
(

_protocol_id,
_voting_round_id,
_is_secure_random,
_merkle_root,

) = event_data_extract_args(event_data, "protocolId", "votingRoundId",
"isSecureRandom", "merkleRoot")

protocol_id = int(_protocol_id)
voting_round_id = int(_voting_round_id)
is_secure_random = bool(_is_secure_random)
merkle_root = un_prefix_0x(_merkle_root.hex().lower())

The state parameter remains unused.

File name: fdc/views.py
Line number: 37

def get_proof_round_id_bytes(self, request, *args, **kwargs):
self.serializer_class = AttestationMinimalProofSerializer

_body = AttestationTypeGetByRoundIdBytesRequest(data=self.request.data)
print("HERE")
_body.is_valid(raise_exception=True)
print("HERE2")
body = _body.validated_data

The parameters are unused and the print code indicates an attempt to debug something.

11

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

File name: configuration/contract_types.py
Line number: 13

def abi_from_file_location(file_location):
return json.load(open(file_location))["abi"]

Make sure to close the file handle.

File name: processing/main.py
Line number: 79

try:
logger.debug(f"Processing round {ev}")
protocol_config.processor.process(ev)

except Exception as e:
processing_qeue.put(ev)

This queue may grow in an uncontrolled fashion as there are no safeguards in place before the queue is
drained again.

TODO: make sure this timestamp is correct
TODO:(luka) Should we validate?
TODO:(matej) validate both at the same time
TODO:(luka) Also handle too early rounds
TODO:(luka) we have no data, error/none
TODO:(luka) We can handle this differently
TODO:(luka) WIP

Several comments indicate the work is unfinished.

Severity and Impact Summary

A lack of error handling and resource management could lead to availability problems.

Recommendation

Make sure to implement safeguards throughout the code base.

12

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Inconsistent logging
Finding ID: FYEO-FLARE-04
Severity: Low
Status: Remediated

Description

Some parts of the code use a logger, others do print. There is also a log of self which could eventually
log sensitive information.

Proof of Issue

File name: processing/main.py
Line number: 68

print(f"Processing from {from_block_exc} to {to_block_inc}, found {len(events)} events")

File name: ftso/views.py
Line number: 42

print(f"Querying for available feeds for round: {voting_round_id}")

File name: processing/processing.py
Line number: 21

logging.error(
"Protocol ID mismatch %s: \nExpected: %s \nReceived: %s",
self,
self.protocol_id,
root.protocol_id,

)

Severity and Impact Summary

Logging self could potentially include sensitive data if the object were to be modified to store such data.

Recommendation

Make sure to not log sensitive data or objects that could be modified to include such data.

13

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Setup defaults to None
Finding ID: FYEO-FLARE-05
Severity: Low
Status: Remediated

Description

For each name the setup function attempts to find a contract. The initial value is assigned to be None. If a
contract can not be found, it is most likely an error however.

Proof of Issue

File name: configuration/contract_types.py
Line number: 98

@classmethod
def default(cls) -> Self:

attr_names = [a.name for a in cls.__attrs_attrs__] # type: ignore
with open(f"configuration/chain/{settings.CONFIG_MODULE}/contracts.json") as f:

contracts = {c["name"]: c["address"] for c in json.load(f)}

kwargs = {}

for name in attr_names:
kwargs[name] = None
if name in contracts:

kwargs[name] = Contract(
name,
contracts[name],

f"configuration/chain/{settings.CONFIG_MODULE}/artifacts/{name}.json",
)

return cls(**kwargs)

Severity and Impact Summary

The relay contract is checked, but missing contracts may lead to error if the code is changed later on.

Recommendation

While the code asserts that relay is not None and relay.address is not None for the relay contract,
this setup could have None values for any other contract that may be used. If the config expects these to
be set, a value of None should be treated as an error.

14

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Missing documentation of unit tests
Finding ID: FYEO-FLARE-06
Severity: Informational
Status: Remediated

Description

While there are unit tests there is no instruction on how to run them.

The documentation states how to build the docker image but there does not seem to be any way to run
the unit tests through the built docker image.

Severity and Impact Summary

Informational

Recommendation

Improve the instructions on how to run the unit test either by a local command or through a command on
the docker image.

15

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Our Process
Methodology

FYEO Inc. uses the following high-level methodology when approaching engagements. They are broken
up into the following phases.

Figure 2: Methodology Flow

Kickoff

The project is kicked off as the sales process has concluded. We typically set up a kickoff meeting where
project stakeholders are gathered to discuss the project as well as the responsibilities of participants.
During this meeting we verify the scope of the engagement and discuss the project activities. It’s an
opportunity for both sides to ask questions and get to know each other. By the end of the kickoff there is
an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

Ramp-up

Ramp-up consists of the activities necessary to gain proficiency on the project. This can include the steps
needed for familiarity with the codebase or technological innovation utilized. This may include, but is not
limited to:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for specific languages

• Researching common flaws and recent technological advancements

16

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Review

The review phase is where most of the work on the engagement is completed. This is the phase where we
analyze the project for flaws and issues that impact the security posture. Depending on the project this
may include an analysis of the architecture, a review of the code, and a specification matching to match
the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

3. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the experience of the
reviewer. No dynamic testing was performed, only the use of custom-built scripts and tools were used to
assist the reviewer during the testing. We discuss our methodology in more detail in the following sections.

Code Safety

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behavior

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This list is general and not comprehensive, meant only to give an understanding of the issues we are
looking for.

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the specification. We
checked for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

• Adherence to the protocol logical description

17

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Reporting

FYEO Inc. delivers a draft report that contains an executive summary, technical details, and observations
about the project.

The executive summary contains an overview of the engagement including the number of findings as well
as a statement about our general risk assessment of the project. We may conclude that the overall risk is
low but depending on what was assessed we may conclude that more scrutiny of the project is needed.

We report security issues identified, as well as informational findings for improvement, categorized by the
following labels:

• Critical

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking and
recommendations for mitigation.

As we perform the audit, we may identify issues that aren’t security related, but are general best practices
and steps that can be taken to lower the attack surface of the project. We will call those out as we
encounter them and as time permits.

As an optional step, we can agree on the creation of a public report that can be shared and distributed
with a larger audience.

Verify

After the preliminary findings have been delivered, this could be in the form of the approved
communication channel or delivery of the draft report, we will verify any fixes within a window of time
specified in the project. After the fixes have been verified, we will change the status of the finding in the
report from open to remediated.

The output of this phase will be a final report with any mitigated findings noted.

Additional Note
It is important to note that, although we did our best in our analysis, no code audit or assessment is a
guarantee of the absence of flaws. Our effort was constrained by resource and time limits along with the
scope of the agreement.

18

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

While assessing the severity of the findings, we considered the impact, ease of exploitability, and the
probability of attack. This is a solid baseline for severity determination.

The Classification of vulnerabilities
Security vulnerabilities and areas for improvement are weighted into one of several categories using, but
is not limited to, the criteria listed below:

Critical – vulnerability will lead to a loss of protected assets
• This is a vulnerability that would lead to immediate loss of protected assets

• The complexity to exploit is low

• The probability of exploit is high

High - vulnerability has potential to lead to a loss of protected assets
• All discrepancies found where there is a security claim made in the documentation that

cannot be found in the code

• All mismatches from the stated and actual functionality

• Unprotected key material

• Weak encryption of keys

• Badly generated key materials

• Txn signatures not verified

• Spending of funds through logic errors

• Calculation errors overflows and underflows

Medium - vulnerability hampers the uptime of the system or can lead to other problems
• Insecure calls to third party libraries

• Use of untested or nonstandard or non-peer-reviewed crypto functions

• Program crashes, leaves core dumps or writes sensitive data to log files

Low – vulnerability has a security impact but does not directly affect the protected assets
• Overly complex functions

• Unchecked return values from 3rd party libraries that could alter the execution flow

19

FLARE | Security Code Review FLARE Data Availability v1.0
14 November 2024

Informational
• General recommendations

20

