

© Coinspect 2025 1 / 50

FDCv2
Source Code Audit

Version: v250113 Prepared for: Flare November 2024

Security Assessment

1. Executive Summary
2. Summary of Findings

2.2 Finding where caution is advised
2.3 Solved issues & recommendations

3. Scope
3.1 Fixes review

4. Assessment
4.1 Security assumptions

5. Detailed Findings
FDC�006 � Voters using Type 2 transactions waste
funds by having a set priority fee

© Coinspect 2025 2 / 50

FDC�007 � XRP indexer provides wrong response
FDC�008 � Voters using Type-2 transactions risk
having their transaction rejected
FDC�009 � Slice data can be lost as return variable is
not replaced
FDC�010 � Indexer framework stores database
credentials as plaintext
FDC�011 � Indexer framework has an insecure default
confirmation value
FDC�012 � Attacker can use null-payment reference
as a valid payment reference on UTXO chains
FDC�013 � XRP verifier and indexer disagree on which
transactions are native
FDC�014 � Misleading log message
FDC�015 � Sanctioned address can cause a Denial-
of-Service on ANYONECANPAY UTXO transactions
FDC�016 � Anyone can prevent an input from being
associated to their UTXO wallet address
FDC�017 � UTXO and XRP source addresses are
inconsistent
FDC�018 � Mismatching source address root for
UTXO coinbase transactions
FDC�019 � Inconsistent indexer database State
responses
FDC�020 � ReadAll execution exposes Flare System
Client to Denial-of-Service
FDC�021 � Fetching signing policies from previous
relay contract versions
FDC�022 � Inconsistent payment reference
processing

© Coinspect 2025 3 / 50

5. Disclaimer

© Coinspect 2025 4 / 50

1. Executive Summary
In November 2024, Flare engaged Coinspect to perform a Source Code Audit of
the second version of the Flare Data Connector codebase. Coinspect was
specifically tasked with identifying security risks in updates to the previously
reviewed repositories, as well as in the newly added verifier and indexer-related
repositories.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
2

Medium
0

Medium
0

Low
5

Low
1

Low
0

No Risk
9

No Risk
0

No Risk
0

Total

16
Total

1
Total

0

Coinspect identified three medium-risk issues, including fee inefficiencies caused
by the use of a fixed transaction fee, the use of a default valid and compliant
payment reference string for invalid references, and discrepancies in source
address roots or UTXO coinbase transactions between the indexer and the MCC
library.

Additionally, the assessment highlighted seven low-risk problems related to:

The indexer API returning wrong or invalid information,
The possibility of voter transactions being rejected due to potentially
insufficient fees,
The storage of plaintext credentials in the indexer framework,

https://flare.network/
https://coinspect.com/

© Coinspect 2025 5 / 50

An insecure default block confirmation value on the indexer framework,
The possibility of sanctioned addresses causing a Denial-of-Service on given
UTXO transactions within block ranges,
The indexer database returning inconsistent responses for different underlying
chain information,
The possibility of causing a Denial-of-Service to the Flare System Client by the
reward distribution data source.

Lastly, it is worth highlighting the number of informational issues included in the
report.

Overall, accurately assessing the risk of each issue was inherently complex, as the
majority of the reviewed repositories serve or are utilized by the core logic
application layer, which falls outside the scope of this review. Consequently, the
risk level depends on how their information is implemented and utilized within the
broader system.

© Coinspect 2025 6 / 50

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.2 Finding where caution is advised

Issues with risk in this list have been addressed to some extent but not fully
mitigated. Any future changes to the codebase should be carefully evaluated to
avoid exacerbating these issues or increasing their probability.

Findings with a risk of None pose no threat, but document an implicit assumption
which must be taken into account. Once acknowledged, these are considered
solved.

Id Title Risk

FDC�019 Inconsistent indexer database State responses Low

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

FDC�012 Attacker can use null-payment reference as a valid
payment reference on UTXO chains Medium

FDC�018 Mismatching source address root for UTXO coinbase
transactions Medium

FDC�007 XRP indexer provides wrong response Low

© Coinspect 2025 7 / 50

FDC�008 Voters using Type-2 transactions risk having their
transaction rejected Low

FDC�010 Indexer framework stores database credentials as
plaintext Low

FDC�011 Indexer framework has an insecure default confirmation
value Low

FDC�020 ReadAll execution exposes Flare System Client to
Denial-of-Service Low

FDC�006 Voters using Type 2 transactions waste funds by having
a set priority fee None

FDC�009 Slice data can be lost as return variable is not replaced None

FDC�013 XRP verifier and indexer disagree on which transactions
are native None

FDC�014 Misleading log message None

FDC�015 Sanctioned address can cause a Denial-of-Service on
ANYONECANPAY UTXO transactions None

FDC�016 Anyone can prevent an input from being associated to
their UTXO wallet address None

FDC�017 UTXO and XRP source addresses are inconsistent None

FDC�021 Fetching signing policies from previous relay contract
versions None

FDC�022 Inconsistent payment reference processing None

© Coinspect 2025 8 / 50

3. Scope
The scope was defined to include the following repositories at their specified
commits:

https://gitlab.com/flarenetwork/fdc/evm-verifier, commit
9c648a5e445b6b360dbb9c9fa9d93cd90f85792f
https://gitlab.com/flarenetwork/libs/go-flare-common, commit
2bb70a08182cb2fa032ee138843c0e6856f45d9d
https://gitlab.com/flarenetwork/fdc/fdc-client, commit
1bf98b05d3307dd1535ea2ca59988f11ea621fdb
https://gitlab.com/flarenetwork/flare-system-client, commit
6caa7b61f4794588de5d1564fb19fa50f61f691d
https://gitlab.com/flarenetwork/fdc/verifier-indexer-framework, commit
706f9e280fc6067bb90d8e92043973de2cf13499
https://gitlab.com/flarenetwork/fdc/verifier-indexer-api, commit
4a4a863bc5021b64d7fdba597f567d8a2cd5c5ff
https://gitlab.com/flarenetwork/fdc/verifier-utxo-indexer, commit
7bbe6621ccd7d2c2d20b82937d5dd0138bb82e4b
https://gitlab.com/flarenetwork/fdc/verifier-xrp-indexer, commit
664c80164be1fecca22e95deae2818b6a3247b0a

On November 21, Flare provided commits that updated the code of the projects to
support a new field for transactions called SourceAddressRoot. The new commits
were only analyzed with this functionality in mind and by diffing them with the
previously provided commits. The updated commits are:

https://gitlab.com/flarenetwork/fdc/evm-verifier, no update
https://gitlab.com/flarenetwork/libs/go-flare-common, no update
https://gitlab.com/flarenetwork/fdc/fdc-client, commit
94399c4315132824298c7db901196b888cfdb890
https://gitlab.com/flarenetwork/flare-system-client, commit
390e4e632ce96b2a641708d626201e69625146a2
https://gitlab.com/flarenetwork/fdc/verifier-indexer-framework, commit
3009437a61fa2457f4d5d5b2b79971c796c38efe
https://gitlab.com/flarenetwork/fdc/verifier-indexer-api, commit
daa1937df6bab7d911b7239fa3c75d6aa8ae2bbf
https://gitlab.com/flarenetwork/fdc/verifier-utxo-indexer, commit
f17e70312b94380b426fb162f9b013fbe51427b8
https://gitlab.com/flarenetwork/fdc/verifier-xrp-indexer, commit
c09a0fd8ee5f270b9604a8de0ab26d245c93fc88
https://gitlab.com/flarenetwork/fdc/mcc, diff between commits
b312535c73707ffdeebf47f5ba9b90435a73e85f and
b1c75793adb928bd6c3bd50261c7bf5c884c3838

https://gitlab.com/flarenetwork/fdc/evm-verifier
https://gitlab.com/flarenetwork/libs/go-flare-common
https://gitlab.com/flarenetwork/fdc/fdc-client
https://gitlab.com/flarenetwork/flare-system-client
https://gitlab.com/flarenetwork/fdc/verifier-indexer-framework
https://gitlab.com/flarenetwork/fdc/verifier-indexer-api
https://gitlab.com/flarenetwork/fdc/verifier-utxo-indexer
https://gitlab.com/flarenetwork/fdc/verifier-xrp-indexer
https://gitlab.com/flarenetwork/fdc/evm-verifier
https://gitlab.com/flarenetwork/libs/go-flare-common
https://gitlab.com/flarenetwork/fdc/fdc-client
https://gitlab.com/flarenetwork/flare-system-client
https://gitlab.com/flarenetwork/fdc/verifier-indexer-framework
https://gitlab.com/flarenetwork/fdc/verifier-indexer-api
https://gitlab.com/flarenetwork/fdc/verifier-utxo-indexer
https://gitlab.com/flarenetwork/fdc/verifier-xrp-indexer
https://gitlab.com/flarenetwork/fdc/mcc

© Coinspect 2025 9 / 50

Coinspect identified the py_flare_common Python library, maintained by the Flare
team, as a key component for computing the Merkle tree and the Source Address
Root. However, the team was unable to investigate the behavior of the MerkleTree
function when provided with an empty array of addresses due to the lack of
access to the library.

3.1 Fixes review

on December 18, Flare contacted Coinspect to perform a fix review. The fix
review was carried in the following commits:

https://gitlab.com/flarenetwork/fdc/evm-verifier, commit
c105809f0b444a977be1e01d9a0a735a1fd995ab
https://gitlab.com/flarenetwork/libs/go-flare-common, commit
aeaae3b73cabd56024df220f36523ddca2e0d4ba
https://gitlab.com/flarenetwork/fdc/fdc-client, commit
78b38a479e27a2c12015f6029e145d992672f03c
https://gitlab.com/flarenetwork/flare-system-client, commit
b7deb363d38f36f478489953d1e552b10037b0ce
https://gitlab.com/flarenetwork/fdc/verifier-indexer-framework, commit
c7bd102cb88a984ca2adda96544acccd27bd2cb6
https://gitlab.com/flarenetwork/fdc/verifier-indexer-api, commit
29e4c0a419d291249e767640324cd1f3becafddc
https://gitlab.com/flarenetwork/fdc/verifier-utxo-indexer, commit
7faaf78f97f8f48ba02d536b199adebe2826bed0

The fix review only dealt with changes related to the issues detailed in this report.

https://gitlab.com/flarenetwork/fdc/evm-verifier
https://gitlab.com/flarenetwork/libs/go-flare-common
https://gitlab.com/flarenetwork/fdc/fdc-client
https://gitlab.com/flarenetwork/flare-system-client
https://gitlab.com/flarenetwork/fdc/verifier-indexer-framework
https://gitlab.com/flarenetwork/fdc/verifier-indexer-api
https://gitlab.com/flarenetwork/fdc/verifier-utxo-indexer

© Coinspect 2025 10 / 50

4. Assessment
The Flare Data Connector protocol (FDC for short) is a system of interconnected
systems which aim to provide an oracle service for the Flare chain. The system as
a whole consists of both on-chain and off-chain programs which work together to
identify valid voters for the oracle data, gather their signatures and provide third-
parties with a way to verify arbitrary data on-chain.

This particular review had a primary and secondary targets:

 Main target� Indexing API and attestation types implementations
 Secondary target� Updates to the FDC client and the Flare System Client

(FSC for short)

The threat model for the indexers, the attestation types and the FDC/FSC clients
are quite different.

On the indexers side, the biggest threat identified is an attacker that can generate
a transaction in one of the supported chains that is not parsed correctly or unable
to be parsed. For example, an adversarial agent in the FAsset system could try to
move collateral without it being detected by the indexer (see MCC-1 for an specific
instance of this threat). An attacker can also try to generate transactions that
cause the system to halt to cause a denial of service (see ATC-30).

For attestation types implementations, the concerns are similar: the
implementations must match the specification exactly, and it should not be
possible for an adversary to create transactions that for all intent and purposes
should signal a certain event, but the system does not identify them as such (for
an example, see ATC-09). Attestations also need to prevent attackers from
leveraging them against users due to having wrong assumptions (as in ATC-22).

The FDC and FSC are systems that work in tandem. While the FDC prepares the
correct (from the voters' point of view) merkle root, the FSC is responsible for
querying it and posting the signatures on the Flare blockchain when the threshold
is reached. Note that a critical assumption is that the FDC and FSC trust each other
and the FDC trusts the verifier servers that report data about the attestations.

For these systems, the threat model is mainly concerned with a denial of service
attack. Other threats, such as signature verification, while critical, are not the main
responsibility of the off-chain components. These checks can be found on the
Relay.sol contract, which was out of scope for this review.

Reviewers identified as the most important changes to the FDC/FSC repositories the
following additions:

© Coinspect 2025 11 / 50

Support for new Type 2 transactions
Changes in the FSC's finalizer package, which now uses an additional channel
the messageChannel, to which the voter's own votes are sent when they
submitSignatures on-chain.

It is worth mentioning that this project's scope included reviewing the Verifier
Indexer Framework, a blockchain-agnostic, generic framework written in Go for
creating indexers. However, it is important to note that the UTXO indexer
reviewed does not implement this framework and is instead written in Python. The
lack of a unified ecosystem not only exposes the project to higher maintenance
costs but also requires additional resources to manage compatibility issues, code
consistency, and integration efforts across different platforms.

4.1 Security assumptions

 The JSON�RPC contacted by the indexer is trusted by the operators
 The verifiers used by the FDC voters are trusted by the voters
 More than half the voters are honest and live

© Coinspect 2025 12 / 50

5. Detailed Findings

FDC�006
Voters using Type 2 transactions waste
funds by having a set priority fee

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

flare-system-client/utils/chain/tx_utils.go

Description

Voters taking advantage of the Type-2 transactions will see their funds
wasted due to the system using a set max priority fee, either hardcoded on
the code or via the configuration.

To understand the issue, consider the following snippet in the SendRawType2Tx
method:

© Coinspect 2025 13 / 50

tipCap := new(big.Int)
if gasConfig.MaxPriorityFeePerGas != nil &&

gasConfig.MaxPriorityFeePerGas.Cmp(big.NewInt(0)) == 1 {
tipCap.Set(gasConfig.MaxPriorityFeePerGas)

} else {
tipCap.Set(DefaultTipCap)

}

gasFeeCap = gasFeeCap.Add(gasFeeCap, tipCap)

// ... redacted for brevity...

txData := types.DynamicFeeTx{
ChainID: chainID,
Nonce: nonce,
GasTipCap: tipCap,
GasFeeCap: gasFeeCap,
Gas: gasLimit,
To: &toAddress,
Value: value,
Data: data,

}

The tipCap is a value obtained either directly from the configuration or a
default (set at 20 GWei). In any case, the result is the same: whenever the
priority fee for inclusion is lower than the set priority fee, the voter will be
wasting funds, as the difference will be burned.

Note that the current calculation goes against Avalanche's recommendations
on gas-fee calculations, which states that the transaction's priority fee should
be calculated using the eth_maxPriorityFeePerGas endpoint.

Recommendation

Change the configuration parameters so that users can set a bound to
MaxPriorityFeePerGas instead of using that value directly.

The value should be gotten from the node's eth_maxPriorityFeePerGas
endpoint and increased by a small multiplier, as it is likely the protocol wants
to prioritize inclusion.

Status

Acknowledged. Flare has stated that submit1, submit2 and submitSignatures
transactions are refunded via a consensus-level mechanism. In light of this,
the issue's severity has also been lowered from medium to informational.

https://docs.avax.network/api-reference/standards/guides/txn-fees#c-chain-fees

© Coinspect 2025 14 / 50

Flare stated that other minor concerns reflected in this issue such as inclusion
speed and gas pricing are not a priority right now and will be revisited later.

© Coinspect 2025 15 / 50

FDC�007
XRP indexer provides wrong response

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

verifier-indexer-api/src/entity/xrp-entity-definitions.ts:92

Description

The XRP entity definition is currently returning XRP transactions from the
database with an incorrect chainType, causing the
transactionsWithinBlockRange API function to return inaccurate data.

As shown below, the chainType property is set to DOGE instead of XRP:

id: 0,
chainType: ChainType.DOGE, // TODO: add a chainType variable
transactionId: this.hash,

Furthermore, Coinspect identified several TODO comments scattered
throughout the file and the repository, suggesting that the verifier-indexer-
api might still be in the development phase.

© Coinspect 2025 16 / 50

Recommendation

Fix the chainType value returned. Review pending TODO comments.

Status

Fixed by commit 29e4c0a419d291249e767640324cd1f3becafddc. The chainType is
now correctly returned as XRP.

© Coinspect 2025 17 / 50

FDC�008
Voters using Type-2 transactions risk
having their transaction rejected

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

flare-system-client/utils/chain/tx_utils.go

Description

Voters that set their BaseFeePerGasCap are at risk of having their transaction
rejected because the result from eth_baseFee might not be enough to cover
the transaction.

The base fee is a dynamic value that cannot be predicted accurately by users.
All users that set the baseFee are at risk of having transactions rejected when
the base fee spikes.

Recommendation

© Coinspect 2025 18 / 50

Allow the user to set independent values for maxPriorityFeePerGas and
maxFeePerGas. Users should not set the BaseFeePerGasCap, as the base fee is a
protocol-dictated value that users have, in general, no way of predicting.

Because the blockchain only charges the minimum between (maxFeePerGas,
baseFee + maxPriorityFeePerGas) users should set the absolute maximum they
are willing to pay in maxFeePerGas configuration, while setting a smaller priority
fee in maxPriorityFeePerGas which should cover the priority fee for normal
scenarios.

Status

Fixed. The usage of the BaseFeePerGasCap parameter is discouraged in the FSC
README file. This parameter is required for testing purposes mainly.

© Coinspect 2025 19 / 50

FDC�009
Slice data can be lost as return variable is
not replaced

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

fdc/fdc-client/client/attestation/verification.go

Description

The slices.Replace method is used in the Response::addRound method, but the
result is discarded:

_ = slices.Replace(r, roundIDStartByte, roundIDEndByte, roundIDSlot...)

While in this particular scenario the variable being replaced is inconsequential,
because the length of the underlying array is not modified, calling
slices.Replace and discarding the result is not recommended: depending on
the length of the arguments the slice might now represent an outdated view
of the underlying array.

© Coinspect 2025 20 / 50

Recommendation

Assign to r the result of the call to Replace.

Status

Fixed by commit 78b38a479e27a2c12015f6029e145d992672f03c. r is now
assigned.

© Coinspect 2025 21 / 50

FDC�010
Indexer framework stores database
credentials as plaintext

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

fdc/verifier-indexer-framework/pkg/config/config.go

Description

The indexer framework stores the postgresql databases credentials in a toml
file. This prevents operators from using secret management solutions offered
by cloud services, which provide features such as key rotation and
monitoring.

Recommendation

Allow operators to store the credentials in environment variables.

© Coinspect 2025 22 / 50

Status

Fixed in commit c7bd102cb88a984ca2adda96544acccd27bd2cb6.
Database credentials can now be specified via environment variables.

© Coinspect 2025 23 / 50

FDC�011
Indexer framework has an insecure default
confirmation value

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

fdc/verifier-indexer-framework/pkg/config/config.go

Description

The indexer framework uses a default indexer configured with only one
confirmation. Most blockchains systems do not have single-block
confirmation, making this default overly optimistic and making operators that
forget the configuration parameter ingest non-confirmed blocks.

Recommendation

Make the number of confirmation blockchain dependent. The indexer
framework should know which blockchain is the underlying one, and provide
an appropriate number of confirmations.

© Coinspect 2025 24 / 50

Note that the confirmation parameter is consensus critical, as all voters need
to reach the same conclusion. This means voters should not normally need to
change the value.

Status

Fixed in commit c7bd102cb88a984ca2adda96544acccd27bd2cb6. The
default value for Confirmations has been removed from the indexer
framework and now varies based on the specific implementation for each
different blockchain.

© Coinspect 2025 25 / 50

FDC�012
Attacker can use null-payment reference
as a valid payment reference on UTXO
chains

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

flarenetwork/fdc/verifier-utxo-
indexer/utxo_indexer/models/transaction.py:79

mcc/src/base-objects/transactions/UtxoTransaction.ts:48

mcc/src/base-objects/transactions/XrpTransaction.ts:47

Description

Implementations using standard payment references can check for a Payment
with a 000...000 reference, which is actually the default reference for non-
existent UTXO payment reference. The zero payment reference complies with
the Flare standard payment reference.

This is enabled by the UTXO indexer, which returns such payment reference
for transactions do not include one:

https://github.com/flare-foundation/songbird-state-connector-protocol/blob/main/specs/attestations/external-chains/standardPaymentReference.md

© Coinspect 2025 26 / 50

def _extract_payment_reference(response: TransactionResponse):
 ...
 if len(std_references) == 1:
 return std_references[0]
 return ZERO_REFERENCE

There are two scenarios where this would be exploitable: an honest developer
that reads the specification of the Payment attestation and wants to check for
a standard payment reference. Assume they are following the official
verification workflow example, which states:

The user first needs to call the requestServiceUsage(...) function. The
contract then stores a record that a specific msg.sender has requested
to use the service, and issues a personal 32-byte payment reference for
the request. It returns a request for payment containing:

The developer issues a personal 32-byte payment reference to the user, and
decides that payment references can be auto-incremental and zero-indexed.
All users that register can now make a Payment without a payment reference
and have it recognized as a valid attestation.

The other scenario involves a scammer trying to exploit users. They on
purpose develop a smart contract that leverages this issue. For example, it
could be a betting contract that bets on the non-existence of a transaction
with a zero payment reference. Users check that the transaction does not
exist and bet on the contract. At that point, the scammer shows a transaction
that has no payment reference is actually attested for.

Note that the XRP indexer does not have this problem, as it correctly specifies
an invalid payment reference as "".

func paymentReference(tx XRPTransaction) string {
if len(tx.Memos) == 1 {

if memo, ok := tx.Memos[0]["Memo"]; ok {
if memoData, ok := memo["MemoData"]; ok {

if len(memoData) == 64 {
return memoData

}
}

}
}

return ""
}

Also note that the ReferencedPaymentNonexistence attestation is not affected,
as it checks for the zero-reference in generic-chain-verifications.ts. All
other attestation types will have the wrong payment reference.

https://github.com/flare-foundation/songbird-state-connector-protocol/blob/main/specs/scProtocol/verification-workflow.md
https://github.com/flare-foundation/songbird-state-connector-protocol/blob/main/specs/attestations/active-types/ReferencedPaymentNonexistence.md

© Coinspect 2025 27 / 50

 if (

unPrefix0x(request.requestBody.standardPaymentReference).toLowerCase()
===
 unPrefix0x(ZERO_BYTES_32).toLowerCase()
) {
 return { status:
VerificationStatus.ZERO_PAYMENT_REFERENCE_UNSUPPORTED };
 }

Following the same inconsistency, the MCC library also generates a valid
payment reference (ZERO_BYTES_32) for payments with invalid or missing
payment references. The following code snippets demonstrate the
stdPaymentReference function.

The first snippet applies to UTXO-based transactions:

public get stdPaymentReference(): string {
 let paymentReference = this.reference.length === 1 ?
prefix0x(this.reference[0]) : "";
 if (!isValidBytes32Hex(paymentReference)) {
 paymentReference = ZERO_BYTES_32;
 }
 return paymentReference;
}

The next example shows the implementation for XRP transactions:

public get stdPaymentReference(): string {
 const paymentReference = this.reference.length === 1 ?
prefix0x(this.reference[0]) : "";
 if (isValidBytes32Hex(paymentReference)) {
 return paymentReference;
 } else {
 const alternative = bytesAsHexToString(paymentReference);
 if (isValidBytes32Hex(alternative)) {
 return alternative;
 }
 return ZERO_BYTES_32;
 }
}

In both implementations, the default value for an invalid or missing payment
reference is the string ZERO_BYTES_32 (000...000).

Recommendation

The null value for UTXO payment references should not fit the standard
payment reference format. Align the null payment reference for invalid or non-

© Coinspect 2025 28 / 50

existent payment references across the platform.

Add integration tests to validate and compare the expected outputs between
MCC and the UTXO indexers, ensuring uniform behavior.

Status

Fixed in commit 5bd32b1abc37cf86ace99cbe03e0258b70f32ec3 from the
Developer Hub Documentation. The documentation provides a warning about
the default value assigned to non-standard references.

https://github.com/flare-foundation/developer-hub

© Coinspect 2025 29 / 50

FDC�013
XRP verifier and indexer disagree on which
transactions are native

Status

Solved

Resolution

Deferred

Risk
None

Impact
Recommendation
Likelihood
_

Location

verifier-xrp-indexer/internal/xrp/xrp.go`

Description

The XRP verifier and its indexer disagree about the definition of a native
payment.

The indexer requires the transaction to be of type Payment:

func isNativePayment(tx XRPTransaction) bool {
if tx.TransactionType == "Payment" {

var amountStr string
err := json.Unmarshal(tx.Amount, &amountStr)
if err == nil {

_, err = strconv.Atoi(amountStr)
if err == nil {

return true
}

}

© Coinspect 2025 30 / 50

var amountStruct XRPAmount
err = json.Unmarshal(tx.Amount, &amountStruct)
if err == nil && amountStruct.Currency == XRPCurrency {

return true
}

}

return false
}

While the verifier uses the MCC's library different definition, which only
requires the transaction to have been in XRP native's token.

public get isNativePayment(): boolean {
return this.currencyName === XRP_NATIVE_TOKEN_NAME;

}

The indexer's isNativePayment data is then not used in the rest of the program;
nevertheless it is stored in the database.

Recommendation

Make sure the database data matches what is used in the program.

Status

Deferred. The Flare team stated that the native definition is no longer needed
and will be removed.

© Coinspect 2025 31 / 50

FDC�014
Misleading log message

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

flare-common/pkg/policy/storage.go:50

Description

The Add function in the storage file produces an inaccurate error message,
which complicates troubleshooting by failing to accurately reflect the actual
issue.

In the code snippet below, the error message suggests that the current
signing policy has a larger start voting round ID than the previous one.
However, the condition actually checks if the current policy's start voting
round ID is earlier than the previous policy's ID.

// should be sorted by voting round ID, should not happen
if sp.StartVotingRoundID < s.spList[len(s.spList)-1].StartVotingRoundID
{

return fmt.Errorf("signing policy for reward epoch ID %d has
larger start voting round ID than previous policy",

© Coinspect 2025 32 / 50

sp.RewardEpochID)
}

Recommendation

Update the error message to accurately reflect the logic of the if condition.

Status

Fixed by commit aeaae3b73cabd56024df220f36523ddca2e0d4ba.

© Coinspect 2025 33 / 50

FDC�015
Sanctioned address can cause a Denial-of-
Service on ANYONECANPAY UTXO
transactions

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

verifier-utxo-indexer/utxo_indexer/models/transaction.py:63

Description

UTXO-based systems enable the creation of ANYONECANPAY transactions,
allowing any participant to add arbitrary inputs. However, if a malicious actor
with a sanctioned address includes a single input, it could result in the
rejection of the entire transaction.

As demonstrated in the snippet below, the UTXO indexer retrieves the address
of each input to construct the Merkle tree:

for input in inputs:
 if input.script_key_address != "":
 addresses.append(input.script_key_address)
 else:

© Coinspect 2025 34 / 50

 addresses.append(None)
tree = merkle_tree_from_address_strings(addresses)

Since ANYONECANPAY transactions are unlikely to be utilized during the minting
process, the overall risk of this issue is low.

Recommendation

Clearly document the limitations regarding the use of ANYONECANPAY in
transactions.

Status

Acknowledged. The Flare team has acknowledged this possibility,
emphasizing that FDC is not concerned with how a transaction is created or
signed. Instead, FDC focuses solely on proving the results of signed
transactions. This issue primarily concerns protocols that utilize FDC.

© Coinspect 2025 35 / 50

FDC�016
Anyone can prevent an input from being
associated to their UTXO wallet address

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

verifier-utxo-indexer/utxo_indexer/models/transaction.py:63

Description

Anyone spending from non-standard scripts can use the funds without having
their address included in the Merkle tree.

Consider the snippet below: if the script_key_address in the input is empty,
which is the value when the input spends from a non-standard script, the
address is simply interpreted as None.

for input in inputs:
 if input.script_key_address != "":
 addresses.append(input.script_key_address)
 else:
 addresses.append(None)
tree = merkle_tree_from_address_strings(addresses)

© Coinspect 2025 36 / 50

This allows anyone to avoid being indexed by simply managing their UTXO
coins with non-standard scripts so that an address is not readily available.

The severity of this issue depends on the implementation responsible for
deciding whether a given Merkle tree is accepted or not.

Recommendation

Consider preventing the indexing of inputs from non-standard Bitcoin scripts,
and document this limitation

Status

Acknowledged. This is the intended behavior of the FDC and consumers of its
data should be aware of it.

© Coinspect 2025 37 / 50

FDC�017
UTXO and XRP source addresses are
inconsistent

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Description

The implementation of the SourceAddresses root is inconsistent for XRP and
UTXO chains.

For XRP, an address is part of the merkle tree only if they end with less funds
than they had before the transaction took place:

diff := new(big.Int).Sub(finalVal, previousVal)
if diff.Cmp(big.NewInt(0)) < 0 {

hashedAddress :=
crypto.Keccak256Hash(crypto.Keccak256Hash([]byte(modifiedNode.FinalFiel
ds.Account)).Bytes())

sourceAddresses = append(sourceAddresses, hashedAddress)
}

For UTXO chains, there is no such check.

© Coinspect 2025 38 / 50

As with FDC-016, the impact of this issue will depend on how this information
is consumed by other layers in the system.

Recommendation

Unify the logic to handle SourceAddresses. If impossible due to the differences
in the underlying chains, document the behavior.

Status

Acknowledged. The Flare team stated that Payment XRP transactions would
only involve at most two addresses (the payer and the receiver).

© Coinspect 2025 39 / 50

FDC�018
Mismatching source address root for UTXO
coinbase transactions

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

mcc/src/base-objects/transactions/UtxoTransaction.ts:60

Description

The Merkle tree root for a UTXO coinbase transaction differs between the
computation performed by the MCC library and the UTXO indexer. The
severity of this discrepancy depends on how the source address root is
consumed upstream, but it could potentially lead to a Denial-of-Service for
users interacting with agents that enforce the handshake.

In the MCC library, the merkleTreeFromAddressStrings function generates the
Merkle tree by processing the sourceAddresses. Here's the relevant snippet:

public get sourceAddressesRoot(): string {
 return merkleTreeFromAddressStrings(this.sourceAddresses).root ||
ZERO_BYTES_32;
}

© Coinspect 2025 40 / 50

From the sourceAddresses function, we observe that it returns undefined in the
case of a coinbase transaction:

public get sourceAddresses(): (string | undefined)[] {
 if (isCoinbase(this.data)) {
 // Coinbase transactions mint coins
 return [undefined];
 } else if (hasPrevouts(this.data)) {
 return this.data.vin.map((vin) => {
 return vin.prevout.scriptPubKey.address; // are we sure
that every prevout has an address
 });
 // This indicates faulty assumptions about the transaction data
 } else throw MccError(`transaction ${this.txid} that does not have
prevout and is not coinbase`);
}

In merkleTreeFromAddressStrings, an undefined address is replaced with
ZERO_BYTES_32, and the Merkle tree uses this value as a leaf:

export function merkleTreeFromAddressStrings(addresses: (string |
undefined)[]): MerkleTree {
 const hashedAddresses = [];
 for (const address of addresses) {
 if (address === undefined) {
 hashedAddresses.push(ZERO_BYTES_32);
 } else {

hashedAddresses.push(singleHash(singleHash(decodeAsciiString(address)))
);
 }
 }
 return new MerkleTree(hashedAddresses);
}

In contrast, the UTXO indexer directly assigns the source address root of a
coinbase transaction as ZERO_BYTES, bypassing Merkle tree computation:

def update_source_addresses_root_cb(self, inputs:
List["TransactionInputCoinbase"]):
 self.source_addresses_root = ZERO_SOURCE_ADDRESS_ROOT

This is, the UTXO indexer does not perform MerkleTree([ZERO_BYTES]), unlike
the MCC library.

Recommendation

Align the source address root computation for UTXO coinbase transactions
across the system to ensure consistency.

© Coinspect 2025 41 / 50

Add integration tests to validate and compare the expected outputs between
MCC and the UTXO indexers, ensuring uniform behavior.

Status

Fixed by commit 7faaf78f97f8f48ba02d536b199adebe2826bed0. The UTXO
indexer behavior now matches the one observed in the MCC.

© Coinspect 2025 42 / 50

FDC�019
Inconsistent indexer database State
responses

Status

Caution Advised

Resolution

Deferred

Risk
Low

Impact
Low
Likelihood
Medium

Location

verifier-indexer-api/src/services/indexer-services/utxo-
indexer.service.ts:86

Description

The getStateSetting function for UTXO currently returns a hardcoded, fixed
timestamp of -1 for block information, whereas the same function for XRP
indexed data provides the actual block timestamp. This inconsistency can
lead to issues for clients relying on valid timestamps—like those provided for
XRP—potentially resulting in incorrect decisions or actions.

bottom_indexed_block: {
 height: resPrune.latest_indexed_tail_height,
 timestamp: -1, // FUTURE FEAT: (Luka) add to db
 last_updated: resPrune.timestamp,
},
top_indexed_block: {
 height: resTop.latest_indexed_height,
 timestamp: -1, // FUTURE FEAT: (Luka) add to db

© Coinspect 2025 43 / 50

 last_updated: resTop.timestamp,
},
chain_tip_block: {
 height: resTop.latest_tip_height,
 timestamp: -1, // FUTURE FEAT: (Luka) add to db
 last_updated: resTop.timestamp,
},

Recommendation

Return the correct UTXO block timestamp.

Status

Deferred. This fix will be included in the next release, that is expected to add
more information to the indexer state.

© Coinspect 2025 44 / 50

FDC�020
ReadAll execution exposes Flare System
Client to Denial-of-Service

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

flare-system-client/client/epoch/rewards_utils.go:123

Description

Using ReadAll in Go can lead to memory exhaustion or denial-of-service
vulnerabilities when excessively large inputs, as it loads the entire input into
memory.

The code snippet below illustrates a GET request to fetch the reward-
distribution-data.json file. According to the README, such files are
uploaded to a GitHub repository. If an attacker gains access to this
repository, they could potentially crash all Flare System Clients consuming
this data.

url := fmt.Sprintf("%s/%d/reward-distribution-data.json",
config.UrlPrefix, epochId)

logger.Info("Fetching reward data at: %s", url)

© Coinspect 2025 45 / 50

result := <-shared.ExecuteWithRetryChan(func() ([]byte, error) {
resp, err := http.Get(url)
if err != nil {

return nil, err
}
defer resp.Body.Close()

if resp.StatusCode == http.StatusNotFound {
return nil, nil // 404 is expected if data is not yet

published, don't retry
}
if resp.StatusCode != http.StatusOK {

return nil, errors.Errorf("unexpected status code: %s",
resp.Status)

}

bytes, err := io.ReadAll(resp.Body)

This issue also highlights a broader security risk. If all Flare System Clients
rely on the same repository for reward distribution data, compromising that
repository could disrupt the functionality of all dependent clients.

Recommendation

Implement size restrictions to prevent excessive memory consumption when
processing input.

Ensure clients can access a secondary, trusted repository if the primary
repository becomes unavailable or compromised.

Status

Fixed by commit b7deb363d38f36f478489953d1e552b10037b0ce. The code now
uses a limit reader.

© Coinspect 2025 46 / 50

FDC�021
Fetching signing policies from previous
relay contract versions

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

flare-system-client/client/finalizer/relay_client.go:96

Description

A temporary modification was implemented in the testnet environment to
enable the FSC relay client to read events from both the old and new versions
of the relay contract. This behavior differs from the mainnet environment. As
indicated in the code comments, this change was intended to be removed
prior to this review.

// TEMP CHANGE for upgrading Relay contract, should be removed after 17
Oct 2024

// If using new Songbird Relay, query the old one as well.
// Note: this won't have any effect on other networks as we currently
have unique Relay addresses for each network.
if r.address ==
common.HexToAddress("0x67a916E175a2aF01369294739AA60dDdE1Fad189") {

logsOld, err :=

© Coinspect 2025 47 / 50

db.FetchLogsByAddressAndTopic0(common.HexToAddress("0xbA35e39D01A3f5710
d1e43FC61dbb738B68641c4"), r.topic0SPI, from, to)

if err != nil {
return nil, err

}
allLogs = append(allLogs, logsOld...)

}
// If using new Coston Relay, query the old one as well.
if r.address ==
common.HexToAddress("0x92a6E1127262106611e1e129BB64B6D8654273F7") {

logsOld, err :=
db.FetchLogsByAddressAndTopic0(common.HexToAddress("0xA300E71257547e645
CD7241987D3B75f2012E0E3"), r.topic0SPI, from, to)

if err != nil {
return nil, err

}
allLogs = append(allLogs, logsOld...)

}
// END TEMP CHANGE

Recommendation

Consider removing the temporary change.

Status

Fixed in commit *b7deb363d38f36f478489953d1e552b10037b0ce. The
code pointed out by this issue was removed.

© Coinspect 2025 48 / 50

FDC�022
Inconsistent payment reference processing

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

verifier-xrp-indexer/internal/xrp/xrp.go:237

Description

As illustrated in the snippet below, the XRP indexer converts the extracted
payment reference to a lowercase hexadecimal string, whereas the UTXO
indexer does not enforce this behavior. A third-party client consuming these
strings in hex format could be impacted by a potential case mismatch.

Note that this conversion does not impact the payment reference's
functionality when converted back to bytes, as the case of the hex string is
irrelevant.

func paymentReference(tx XRPTransaction) string {
if len(tx.Memos) == 1 {

if memo, ok := tx.Memos[0]["Memo"]; ok {
if memoData, ok := memo["MemoData"]; ok {

if len(memoData) == 64 {
return

strings.ToLower(memoData)

© Coinspect 2025 49 / 50

}
}

}
}

return ""
}

However, it was observed that the Bitcoin indexer does not enforce lowercase
formatting for payment references. While most RPC nodes encode these
references in lowercase hexadecimal, some may encode them in uppercase,
which does not affect the byte values but introduces inconsistency in
representation.

It is important to note that this issue is informational, as the Standard
Payment Reference documentation defines the payment reference as a 32-
byte string, making the case of the hex string irrelevant for functionality.

Recommendation

The UTXO indexer should enforce storing payment references in lowercase
hexadecimal.

Status

Fixed in commit 7c76d788f20d7371a632730fd359030c42640a1c. Flare
updated the UTXO indexer to use the lowercase format for payment
references.

https://github.com/flare-foundation/songbird-state-connector-protocol/blob/main/specs/attestations/external-chains/standardPaymentReference.md

© Coinspect 2025 50 / 50

5. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

