

© Coinspect 2024 1 / 17

FAsset Update
Smart Contract Audit

Version: v240910 Prepared for: Flare September 2024

Security Assessment

1. Executive Summary
2. Summary of Findings

2.3 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Security assumptions
4.2 Decentralization
4.3 Testing
4.4 Code quality

5. Detailed Findings

© Coinspect 2024 2 / 17

FAS�38 � Rogue agents can delay underlying chain
payments by inflating deadlines
FAS�39 � Agents can bypass emergency pause by
redeeming against themselves

6. Disclaimer

© Coinspect 2024 3 / 17

1. Executive Summary
In August 2024, Flare engaged Coinspect to review a set of updates and the
introduction of new features for the FAsset Protocol smart contracts.

The FAsset Protocol is a collateralized bridge solution that enables cross-chain
native token transfers. The objective of the project was to evaluate the security of
those changes and how they integrate with the previously reviewed system.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
0

Medium
0

Medium
0

Low
1

Low
0

Low
0

No Risk
1

No Risk
0

No Risk
0

Total

2
Total

0
Total

0

During this assessment, Coinspect identified two issues, a medium-risk and a low-
risk issue. FAS-38 shows how rogue agents can inflate payment times in the
underlying chain and FAS-39 illustrates a scenario where agents can still make
redemptions during an emergency pause.

https://flare.network/
https://www.coinspect.com/

© Coinspect 2024 4 / 17

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

FAS�39 Agents can bypass emergency pause by redeeming
against themselves Low

FAS�38 Rogue agents can delay underlying chain payments by
inflating deadlines None

© Coinspect 2024 5 / 17

3. Scope
The source code review of Flare FAssets started on August 19, 2024, and was
conducted on the fasset-v2-audit-4 branch of the git repository located at
https://gitlab.com/flarenetwork/fasset as of commit
997fac606b93f2fac0176f1243f455da44041d4f.

The previous report of the FAsset Protocol v240529 covers the review of the
protocol's migration to the Diamond Proxy infrastructure.

https://gitlab.com/flarenetwork/fasset

© Coinspect 2024 6 / 17

4. Assessment
The new code includes several changes and features from the previous review:

A new facet allowing anyone to ping an agent to check if they are live. This
functionality allows users to emit an event pinging a specific agent, who then
responds to the liveliness check.

Congested scenarios where multiple redemptions are requested to a single
agent, extend the payment deadline on the underlying chain. This gives agents
more time to complete all payments when they are experiencing a high
demand.

The collateral pool token address is now included as part of the data retrieved
when querying an Agent's information as well as during their creation.

An emergency pause feature restricting mint, redeem and liquidate was added.
This is only callable by the governance and previously allowed accounts. The
governance has no restrictions on the maximum pause time, whereas the
duration of an emergency triggered by an allowed account is capped with a
maximum value.

In the context of redemption failures, finishRedemptionWithoutPayment does not
delete redemption request anymore since there is no certainty if proofs have
expired. The redemption is set as defaulted at the end of the call. Also, for
payment confirmations _cleanupPaymentVerification was removed and
_recordPaymentVerification does not cleanup payment hashes older than 14
days. The Flare Team stated as an additional precaution measure they decided
to leave proofs of payments in the database without cleaning them up.

Collateral Pools, Agent Vaults and Collateral Pool Tokens now include an
initialize method. In spite of providing factories for each one of those
contracts, it is strongly recommended to document the risks of not making
their deployments along with an atomic initialization (e.g. if the factory is
bypassed, adversaries could initialize those contracts first).

Regarding the FAsset Token:

Migrated to an upgradeable architecture
Vote power functionality was removed since FTSOv2 no longer consumes it
The Flare Team stated that FAsset token will include permit capabilities,
however, Coinspect identified that no permit feature is implemented.

© Coinspect 2024 7 / 17

4.1 Security assumptions

Coinspect considers that the following aspects should be respected across the
life expectancy of the protocol:

It is possible to create storage collisions across multiple FAsset versions on
purpose. This could be weaponized to rollback the terminate status of a FAsset
Token. New versions of this token should preserve its storage layout.

Future FAsset implementations should always include the assetManager() public
variable/function respecting the first implementation's slot. Without this, the
access control mechanism of the FAssetProxy could not work as expected.

4.2 Decentralization

The new emergency pause feature allows either the governance or a specific set
of allowed accounts to temporarily pause core functionalities of the protocol.
Besides the governance, these sole accounts should have a secure structure to
prevent take-overs (e.g. multisig with a timelock).

Additionally, since the FAsset Token is now upgradeable, users should be aware of
upcoming new changes. Upgrades to this token should be properly announced
and executed with a time-lock so users have enough time to react to these
changes.

4.3 Testing

Coinspect identified that the new features and functionalities were included into
the testing suite. Thanks to this, testing adversarial scenarios was quicker
requiring less setup steps.

4.4 Code quality

The newly introduced code includes relevant comments and NatSpec, also
respecting the protocol's code style. Because of this, the code was easy to read
and understand.

© Coinspect 2024 8 / 17

5. Detailed Findings

FAS�38
Rogue agents can delay underlying chain
payments by inflating deadlines

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

./contracts/assetManager/library/RedemptionRequests.sol:73

Description

Rogue agents can create multiple low-amount redemption tickets against
themselves to inflate their payment deadlines by abusing from the new time
extension mechanism.

This new feature that intends to increase the time-window for
congested/demanded agents could be weaponized against the protocol by

© Coinspect 2024 9 / 17

malicious agents, by triggering multiple redemptions directly using
redeemFromAgent():

 /**
 * Create a redemption from a single agent. Used in self-close exit
from the collateral pool.
 * Note: only collateral pool can call this method.
 */
 function redeemFromAgent(
 address _agentVault,
 address _receiver,
 uint256 _amountUBA,
 string memory _receiverUnderlyingAddress,
 address payable _executor
)
 external payable
 notEmergencyPaused
 {
 RedemptionRequests.redeemFromAgent(_agentVault, _receiver,
_amountUBA, _receiverUnderlyingAddress, _executor);
 }

 function redeemFromAgent(
 address _agentVault,
 address _redeemer,
 uint256 _amountUBA,
 string memory _receiverUnderlyingAddress,
 address payable _executor
)
 internal
 {
 Agent.State storage agent = Agent.get(_agentVault);
 Agents.requireCollateralPool(agent);
 require(_amountUBA != 0, "redemption of 0");
 // close redemption tickets
 uint64 amountAMG = Conversion.convertUBAToAmg(_amountUBA);
 (uint64 closedAMG, uint256 closedUBA) =
Redemptions.closeTickets(agent, amountAMG, false);
 // create redemption request
 AgentRedemptionData memory redemption =
AgentRedemptionData(_agentVault, closedAMG);
 _createRedemptionRequest(redemption, _redeemer,
_receiverUnderlyingAddress, true,
 _executor, (msg.value / Conversion.GWEI).toUint64());
 // burn the closed assets
 Redemptions.burnFAssets(msg.sender, closedUBA);
 }

This function creates a redemption request, which contains the last underlying
block and timestamp at which the agent can make the payment on the
underlying chain.

(request.lastUnderlyingBlock, request.lastUnderlyingTimestamp) =
_lastPaymentBlock(_data.agentVault);

© Coinspect 2024 10 / 17

Both last block and timestamp depend on a timeshift that is extended when
the agent is experiencing high demand:

 // timeshift amortizes for the time that passed from the last
underlying block update;
 // it also adds redemption time extension when there are many
redemption requests in short time
 uint64 timeshift = block.timestamp.toUint64() -
state.currentUnderlyingBlockUpdatedAt
 +
RedemptionTimeExtension.extendTimeForRedemption(_agentVault);

 function extendTimeForRedemption(address _agentVault)
 internal
 returns (uint64)
 {
 State storage state = getState();
 AgentTimeExtensionData storage agentData =
state.agents[_agentVault];
 uint64 timestamp = block.timestamp.toUint64();
 uint64 accumulatedTimestamp = agentData.extendedTimestamp +
state.redemptionPaymentExtensionSeconds;
 agentData.extendedTimestamp =
SafeMath64.max64(accumulatedTimestamp, timestamp);
 return agentData.extendedTimestamp - timestamp;
 }

By creating multiple subsequent redemptions to the same agent, the
extendedTimestamp grows, inflating the timeshift as a consequence, which also
increases both lastUnderlyingBlock and lastUnderlyingTimestamp.

This process is not profitable for redemption requests made through redeem(),
because a minimum redemption size is enforced as redeemers provide the
lots to burn, instead of the amountUBA.

The likelihood of this issue is considered high since agents could inflate the
payment time with no further efforts. Regarding the impact, it is considered
to be medium as it depends on external conditions such as the value of
redemptionPaymentExtensionSeconds and market conditions in order to make
this attack profitable.

Recommendation

To reduce the profitability of the payment time inflation, enforce a minimum
amount to redeem in redeemFromAgent().

Status

© Coinspect 2024 11 / 17

Acknowledged.

The Flare Team stated that this path is not directly exploiteable since every
redemption request is handled by Collateral Pools that only call
redeemFromAgent if the amount to redeem is greater than one lot. However,
Coinspect decided to leave this issue as informational since adding new paths
in the future that call the redemption facet, unaware of this scenario, would
enable the attack shown below.

Proof of Concept

The following scenario shows how it is possible to inflate the redemption
payment deadline by creating multiple redemption requests providing a low
amountUBA. The scenario considers a 40 second extension per redemption
request.

0 - Request payment last timestamp: 1724159385
1 - Request payment last timestamp: 1724159425
2 - Request payment last timestamp: 1724159465
3 - Request payment last timestamp: 1724159505
4 - Request payment last timestamp: 1724159545
5 - Request payment last timestamp: 1724159585
6 - Request payment last timestamp: 1724159625
7 - Request payment last timestamp: 1724159665
8 - Request payment last timestamp: 1724159705
9 - Request payment last timestamp: 1724159745
10 - Request payment last timestamp: 1724159785
11 - Request payment last timestamp: 1724159825
12 - Request payment last timestamp: 1724159865
13 - Request payment last timestamp: 1724159905
14 - Request payment last timestamp: 1724159945
15 - Request payment last timestamp: 1724159985
16 - Request payment last timestamp: 1724160025
17 - Request payment last timestamp: 1724160065
18 - Request payment last timestamp: 1724160105
19 - Request payment last timestamp: 1724160145

 it("Coinspect - Inflates payment timestamp", async () => {
 // init
 const agentVault = await createAgent(agentOwner1,
underlyingAgent1);
 await depositAndMakeAgentAvailable(agentVault, agentOwner1);
 collateralPool = await CollateralPool.at(await
assetManager.getCollateralPool(agentVault.address));

 // Assume that the payment extension is 40s
 await assetManager.setRedemptionPaymentExtensionSeconds(40, { from:
governance });
 const resSettings = web3ResultStruct(await
assetManager.getSettings());
 (resSettings as
AssetManagerInitSettings).redemptionPaymentExtensionSeconds =

© Coinspect 2024 12 / 17

 await assetManager.redemptionPaymentExtensionSeconds();

assert.equal(resSettings.redemptionPaymentExtensionSeconds.toNumber(),
40);

 // Make 20 redemption requests to a specific agent of a small
amount
 const request = await mintAndRedeemFromAgentCustomAmt(
 agentVault,
 collateralPool.address,
 chain,
 underlyingMinter1,
 minterAddress1,
 underlyingRedeemer1,
 redeemerAddress1,
 true,
 1, // Custom Amount
 20 // Amount of subsequent redemptions
);
 });

Where mintAndRedeemFromAgentCustomAmt() is a modified version of
mintAndRedeemFromAgent() that allows specifying the redemption amount and
times:

async function mintAndRedeemFromAgentCustomAmt(
 agentVault: AgentVaultInstance,
 collateralPool: string,
 chain: MockChain,
 underlyingMinterAddress: string,
 minterAddress: string,
 underlyingRedeemerAddress: string,
 redeemerAddress: string,
 updateBlock: boolean,
 redeemCustomAmt: Number,
 requestAmount: number
) {
 // minter
 chain.mint(underlyingMinterAddress, toBNExp(10000, 18));
 if (updateBlock) await updateUnderlyingBlock();
 // perform minting
 const lots = 3;
 const agentInfo = await
assetManager.getAgentInfo(agentVault.address);
 const crFee = await assetManager.collateralReservationFee(lots);
 const resAg = await assetManager.reserveCollateral(
 agentVault.address,
 lots,
 agentInfo.feeBIPS,
 constants.ZERO_ADDRESS,
 { from: minterAddress, value: crFee }
);
 const crt = requiredEventArgs(resAg, "CollateralReserved");
 const paymentAmount = crt.valueUBA.add(crt.feeUBA);
 const txHash = await wallet.addTransaction(
 underlyingMinterAddress,
 crt.paymentAddress,
 paymentAmount,

© Coinspect 2024 13 / 17

 crt.paymentReference
);
 const proof = await attestationProvider.provePayment(txHash,
underlyingMinterAddress, crt.paymentAddress);
 const res = await assetManager.executeMinting(proof,
crt.collateralReservationId, {
 from: minterAddress,
 });
 const minted = requiredEventArgs(res, "MintingExecuted");
 // redeemer "buys" f-assets
 await fAsset.transfer(redeemerAddress, minted.mintedAmountUBA, {
from: minterAddress });

 let lastRequest;
 let redemptionRequests;
 let request;
 for (let index = 0; index < requestAmount; index++) {
 // redemption request
 await impersonateContract(collateralPool,
toBN(512526332000000000), accounts[0]);
 lastRequest = await assetManager.redeemFromAgent (
 agentVault.address,
 redeemerAddress,
 redeemCustomAmt,
 underlyingRedeemerAddress,
 executorAddress1,
 { from: collateralPool, value: executorFee }
);
 redemptionRequests = filterEvents(lastRequest,
"RedemptionRequested").map((e) => e.args);
 request = redemptionRequests[0];
 console.log(`${index} - Request payment last timestamp:
${request.lastUnderlyingTimestamp.toNumber()}`);
 }

 await stopImpersonatingContract(collateralPool);
 return request;
 }

© Coinspect 2024 14 / 17

FAS�39
Agents can bypass emergency pause by
redeeming against themselves

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

./contracts/assetManager/facets/RedemptionRequestsFacet.sol:119

Description

Agents could abuse from an emergency pause state to alter their collateral by
self-closing a position they own.

The new notEmergencyPaused modifier is not applied to the following function,
allowing agents to process self-redemptions even when the protocol is under
an emergency state.

 function selfClose(
 address _agentVault,
 uint256 _amountUBA
)
 external
 returns (uint256 _closedAmountUBA)
 {
 // in SelfClose.selfClose we check that only agent can do this

© Coinspect 2024 15 / 17

 return RedemptionRequests.selfClose(_agentVault, _amountUBA);
 }

Additionally, the minting process restricts an agent from self-minting when the
protocol is emergency paused:

 function selfMint(
 Payment.Proof calldata _payment,
 address _agentVault,
 uint256 _lots
)
 external
 onlyAttached
 notEmergencyPaused
 nonReentrant
 {
 Minting.selfMint(_payment, _agentVault, _lots.toUint64());
 }

In relationship to the previous item, users that managed to make a collateral
reservation before an emergency pause will be able to execute their minting
position:

 function executeMinting(
 Payment.Proof calldata _payment,
 uint256 _collateralReservationId
)
 external
 nonReentrant
 {
 Minting.executeMinting(_payment,
_collateralReservationId.toUint64());
 }

This action generates an amount of FAssets even if the protocol is
experiencing an emergency pause. However, restricting the minting execution
could derive in unfair challenges or reservation fee collection by providing the
non-payment proof.

Recommendation

Restrict agents from self-closing positions when there is an emergency pause.
Additionally, evaluate if all means of generation/consumption of FAssets
should be restricted during an emergency pause.

Status

© Coinspect 2024 16 / 17

Fixed on commit 2a2cad73ea9eca9f242359ff3dadd0b1437f15aa.

The notEmergencyPaused modifier was added to selfClose restricting
redemptions against themselves.

© Coinspect 2024 17 / 17

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

