

© Coinspect 2024 1 / 24

FDCv1
Source Code Audit

Version: v241004 Prepared for: Flare October 2024

Security Assessment

1. Executive Summary
2. Summary of Findings

2.1 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Security assumptions
4.2 Testing

5. Detailed Findings
FDC�001 � No double-check against faking bit-vote
weight
FDC�002 � Existing attestation index is duplicated

© Coinspect 2024 2 / 24

FDC�003 � Clients cannot defend against malicious
verifier server
FDC�004 � Client cannot aggregate responses from
different verifier servers
FDC�005 � Clients show local non-determinism in
consensus code

6. Disclaimer

© Coinspect 2024 3 / 24

1. Executive Summary
In August 20224, Flare engaged Coinspect to perform a Source Code Audit of its
FDC Client and changes related to it on other projects. The objective of the
review was to evaluate the security of the application.

The FDC Client and related changes aim to provide the Flare chain with accurate
data about external events and provide users with a way to prove to smart
contracts running on the chain that these events happened.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
2

Medium
0

Medium
0

Low
0

Low
0

Low
0

No Risk
3

No Risk
0

No Risk
0

Total

5
Total

0
Total

0

The review uncovered a race condition that might cause different clients to reach
different bit vote consensus, described in FDC-005 and how the system would fail
to react to a malfunctioning verifier server, detailed in FDC-003.

https://flare.network/
https://coinspect.com/

© Coinspect 2024 4 / 24

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.1 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

FDC�003 Clients cannot defend against malicious verifier server Medium

FDC�005 Clients show local non-determinism in consensus code Medium

FDC�001 No double-check against faking bit-vote weight None

FDC�002 Existing attestation index is duplicated None

FDC�004 Client cannot aggregate responses from different
verifier servers None

© Coinspect 2024 5 / 24

3. Scope
The scope comprised four main repositories. Of these repositories, fdc-client was
marked as the most relevant for this review and the only one to be reviewed
almost fully. For the other three repositories, Flare indicated that only the changes
that are related to the integration of the FDC system into the protocol should be
reviewed.

https://gitlab.com/flarenetwork/fdc/fdc-client at commit
2f3fefbb1a7c3947f1c5e664404a8d45a1dc2079
https://gitlab.com/flarenetwork/flare-smart-contracts-v2 at commit
d1ced1a8e8d511cd78e55add281dcbbcc63b83d4
https://gitlab.com/flarenetwork/flare-system-c-chain-indexer at commit
e960399001cb8216632eec235a745acf7070f1cf
https://github.com/flare-foundation/flare-system-client at commit
b0bc847ae246a3d9b74dec446c8c12ecc37d47b2

One repository, the evm-verifier, was provided as an example verifier server to
facilitate the review. While this repository was in scope, it was not a priority: the
system should work while supporting arbitrary attestation types as long as they
are decidable.

The emv-verifier scope was set to:

https://gitlab.com/flarenetwork/fdc/evm-verifier at commit
9c648a5e445b6b360dbb9c9fa9d93cd90f85792f

It is important to stress that Flare stressed that no logic related to HTTP
communications part of the systems was to be reviewed. This made the bit-voting
logic the principal part of the review.

On September 30, the fixes review was carried out on the fdc-client repository at
commit 725c1ed89cbaaccfc69e4731b79e0e640c9e2348 of the fixes branch. On
October 2, an additional fix-commit for FDC-005 was reviewed. More information is
at the Status section of the issue.

© Coinspect 2024 6 / 24

4. Assessment
The main system under review is the client-side of the Flare Data Connector
Protocol or FDC for short. This protocol is a subprotocol of a bigger Flare Systems
Protocol or FSP for short. The FSP is in charge of coordinating the work of each
subprotocol and voting on meta-protocol information, such as who the voters for
each reward epoch are. The client for the FSP is the Flare System Client or FSC for
short.

The FDC is integrated into the bigger system and its responsibilities are
constrained to providing attestations about external events. These external events
are arbitrary, and they need only be decidable: an attester needs to be able to
clearly and unequivocally assert whether certain event happened or not.

An implemented attestation is the EVMTransaction attestation, which asserts that a
transaction with certain properties exists in the Ethereum mainchain.

To understand the threat model, it is important to take into account how each
piece of the system is supposed to communicate. Most of the interaction happens
through the blockchain itself and is mediated by the CChain Indexer project, which
is responsible for timely and correctly picking up data from the chain where the
relevant smart contracts are deployed. The interactions are as follows:

 End-users interact with the FdcHub smart contract to create an Attestation
Request �AR�

 End-users interact with the FDC HTTP server to requests proofs for their
attestation requests.

 End-users might interact with a Verifier Server to create an Attestation
Request to send on chain.

 The FSP interacts with the FDC via the FDC's HTTP server. This interaction is
between trusted parties: it is expected that participating entities run both an
FDC and FSP client.

 FSP interacts with a Verifier Server to carry out verifications of ARs. The
Verifier Server can be local or third-party.

The interactions most relevant here are the ones between the FDC and the
underlying blockchain, mediated by the CChain Indexer. These interactions
comprise reading from the attestation request events (provided by end users) and
bit voting, commit and signature events collected in the Sumission.sol contract.

As mentioned in the Scope section, the HTTP logic was not in scope. This was
clarified after Coinspect described an issue by which users were not able to get
proofs for their attestations, making the system not usable. Flare answered that
these sections of the code were still a work in progress at this point of the review,

© Coinspect 2024 7 / 24

and clarified that the review should be made assuming that users could get proofs
(see the Security Assumptions section).

Due to the scope constrains, the threat model for the project was quite narrow:
the main threats were related to the processing of Attestations Requests �AR� and
bit votes on the FDC client. Coinspect considered two main threat actors: an evil
user sending ARs collected via the C�Chain indexer and an evil voter sending
specially crafted bit votes. While Coinspect identified the possibility of an evil or
malfunctioning verifier (see FDC-003 and FDC-004), these were deemphasized in this
review (see Security Assumptions).

After the engagement, Coinspect found no ways for an attacker to cause
disruption to the FDC either via bit votes or ARs. Nevertheless, a race condition
described in FDC-005 can cause voters to not reach agreement on a consensus
bitvote, thus causing a voter to not send their vote on a round or, if it happens in
enough voters, causing generalized service disruption. The race condition cannot
be triggered arbitrarily by an attacker.

4.1 Security assumptions

Because the system under review depends on several subsystems that all work in
unison, and because the scope of the project includes many partial reviews
(focused on only changes relevant to the FDC), Coinspect made several security
assumptions when performing the review.

The main assumptions where:

 Future Attestation Requests are specified correctly and they need to be
decidable.

 Underlying chains work timely and correctly
 The JSON�RPCs from which the C Chain Indexer feeds work correctly
 The majority of attestators (by weight) are honest and respond timely to

requests
 FDC and FSP systems are both run from the same entity
 The HTTP routes are registered and work by providing users with the

attestation proofs and correctly deal with the communications between
systems

While not directly related to the FDC's and thus not the priority of this review, it
was also assumed that the FSC operators protected their private keys correctly
and kept only the necessary keys in hot storage. It is worth pointing out that the
FSC now has a insecurePrivateKeys option which Coinspect assumed voters
would not use.

Furthermore, by Flare's request, Coinspect assumed that the verifier server chosen
by the FDC operator was honest and would always provide the correct answer to

© Coinspect 2024 8 / 24

FDC's queries. Nevertheless, a buggy or malfunctioning verifier server was
considered a risk (see FDC-004), as the implementation provided by Flare is just a
reference and it is expected that different implementations will exist.

4.2 Testing

Flare took a two-pronged approach to testing: there are unit-tests and integration
tests.

All the repositories contain unit tests. The fdc-client has a strong coverage of all
the critical packages, such as bitvote or attestation.

ok local/fdc/client/attestation 1.017s coverage: 70.7% of
statements
ok local/fdc/client/attestation/bitVotes 13.915s coverage: 82.6% of
statements
ok local/fdc/client/collector 2.020s coverage: 34.6% of
statements
ok local/fdc/client/config 0.008s coverage: 74.4% of statements
ok local/fdc/client/manager 6.030s coverage: 74.0% of
statements
ok local/fdc/client/round 0.009s coverage: 12.2% of statements
ok local/fdc/client/timing 0.007s coverage: 51.5% of statements
ok local/fdc/server 0.118s coverage: 65.5% of statements

The indexer uses a mock-chain for its unit tests and has a coverage of only 50%�

go test ./indexer -cover
ok flare-ftso-indexer/indexer 3.645s coverage: 47.1% of
statements

The flare-system-client repository has a strong coverage on the voters and
merkle packages, but only 13% of coverage for its epoch package and 50% for
crytical components finalizer and protocol, as well as several packages with no
coverage:

? flare-tlc/client/cronjob [no test files]
ok flare-tlc/client/epoch 0.009s coverage: 13.3% of statements
ok flare-tlc/client/finalizer 6.414s coverage: 59.9% of
statements
ok flare-tlc/client/protocol 2.486s coverage: 51.5% of
statements
ok flare-tlc/client/shared/voters 0.009s coverage: 80.3% of
statements
ok flare-tlc/utils 0.008s coverage: 8.1% of statements
ok flare-tlc/utils/merkle 0.008s coverage: 93.9% of statements

© Coinspect 2024 9 / 24

On the flare-smart-contracts-v2 repository at the fdc/ directory, only the
Verification.sol contract has any testing done, but it has a 100% coverage.

On the other hand, the integration tests were provided in a separate repository
called fsp-e2e-testing. Unfortunately, these tests were not fully working with the
commit-under-review. While reckoning the system Coinspect ran them on a
different commit provided by Flare, but they were not utilized afterwards as they
would have yielded results that differed from the set scope for this review.

The testing strategy is sound, with a healthy mix of unit testing and integration
tests. Nevertheless, work should be done to improve the coverage and specially
tests that exercise corner cases. Issues such as a FDC-005 would have shown up in
testing in the affected functions were covered and the tests ran with the -race
detector.

Fuzz tests should also be added. Coinspect stressed the BranchAndBound methods
with fuzz tests to detect potentially harmful inputs. Unfortunately, a 1 second non-
modifiable timeout in Go fuzzer limited the utility of the fuzz. Nevertheless,
Coinspect found inputs that made the BranchAndBound methods run for about 5
seconds. According to Flare, this is an acceptable run time for the method. More
work can be done to implement fuzzing, both for stress testing and comparing
results with an alternative implementation.

Note that the quoted coverage snippets are modified to remove some non-
relevant packages.

https://github.com/golang/go/blob/998ce1c4262aab0153b5e89f84ef2ddd57507ec7/src/internal/fuzz/worker.go#L30

© Coinspect 2024 10 / 24

5. Detailed Findings

FDC�001
No double-check against faking bit-vote
weight

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

fdc-client/client/manager/manager.go

Description

The FDC client assumes that the current protection implemented in the smart
contracts against two entities registering the same singing policy address will
continue to be present in the future and working as intended. While the
invariant is currently correctly held by the smart contracts, it would be best to
implement defense-in-depth mechanism in the critical path to make sure that
voter weight is not faked by evil voters.

© Coinspect 2024 11 / 24

If the invariant was not held by the smart contracts, an attacker could fake
bit-vote weight by controlling two voters entities and having both use the
same signing policy address. This would allow them to completely halt the
system by voting for the empty bit vote.

The problem lies in the ProcessBitVote method, which is called every time a
voter sends a bit vote vector. Consider the following snippet:

signingAddress, exists :=
r.voterSet.SubmitToSigningAddress[message.From]

if !exists {
return fmt.Errorf("no signing address")

}

voter, exists := r.voterSet.VoterDataMap[signingAddress]
if !exists {

return fmt.Errorf("invalid voter")
}
weight := voter.Weight
if weight <= 0 {

return fmt.Errorf("zero weight voter")
}
// check if a bitVote was already submitted by the sender
weightedBitVote, exists := r.bitVoteCheckList[message.From]

Note the the signingAddress is used to retrieve the weight of this voter, while
the message.From, which is the sender of the original transaction (see
ExtractPayloads in fdc-client/flare-common/payload/payload.go), is used to
check for duplicates.

This would allow an attacker to:

 Register a voter A and set their signingAddress to C_signing
 Register a voter B and set their signingAddress to C_signing
 Send a bitvote with A, which will use the weight of C_signing
 Send another bitvote with B, which will use the weight of C_sigining

again and not be considered a duplicate

Recommendation

Double-check for duplicated usages of the address from which the weight is
fetched to make this safety-critical logic not depend on a single component.

Status

Fixed. The invariant is held by the smart contracts. As an added safety
measures, checks that make sure that the signing policy is consistent have

© Coinspect 2024 12 / 24

been added in commit 725c1ed89cbaaccfc69e4731b79e0e640c9e2348.

Proof of concept

The test is intended for fdc-client/client/manager/manager_test.go. The
system should err out on the second attempt, but it will not do so.

func TestManagerMethodsEvil(t *testing.T) {
cfg, err := config.ReadUserRaw(USER_FILE)
require.NoError(t, err)

sharedDataPipes := shared.NewDataPipes()
mngr, err := New(&cfg, sharedDataPipes)
require.NoError(t, err)

signingPolicyParsed, err :=
policy.ParseSigningPolicyInitializedEvent(policyLog)

require.NoError(t, err)

submitToSigning := make(map[common.Address]common.Address)

for i := range signingPolicyParsed.Voters {
submitToSigning[signingPolicyParsed.Voters[i]] =

signingPolicyParsed.Voters[i]
}
// ! Replace so that submit[0] = siging[1]
// ! Now we have 0 --> 1
// ! And 1 --> 1
submitToSigning[signingPolicyParsed.Voters[0]] =

signingPolicyParsed.Voters[1]
// the submitter is 0x8fe15e1048f90bc028a60007c7d5b55d9d20de66
// this is the signing address of the submitter:

0xCCb478bBA9c76AE21e13906A06aeb210ad3593cf
fmt.Printf("\033[0;31m[COIN]\033[0m submitToSigning: %+v\n",

submitToSigning[common.HexToAddress("0x8fe15e1048f90bc028a60007c7d5b55d
9d20de66")])

votersData := shared.VotersData{Policy: signingPolicyParsed,
SubmitToSigningAddress: submitToSigning}

err = mngr.OnSigningPolicy(votersData)
require.NoError(t, err)

fmt.Println("---- first bitvote ---")

bitVoteMessageCorrect := bitVoteMessage
bitVoteMessageCorrect.Payload = []byte{664111 % 256, 0, 0}
bitVoteMessageCorrect.From =

common.HexToAddress("0x8fe15e1048f90bc028a60007c7d5b55d9d20de66")
fmt.Printf("[TEST] from: %s\n", bitVoteMessageCorrect.From)
err = mngr.OnBitVote(bitVoteMessageCorrect)
require.NoError(t, err)

r, ok := mngr.Rounds.Get(664111)

© Coinspect 2024 13 / 24

require.True(t, ok)
r.ComputeConsensusBitVote()
fmt.Println("---- second bitvote ---")

// Let us now send a bitvote from another sender, but who also
has a signing address set to

// 0xCCb478bBA9c76AE21e13906A06aeb210ad3593cf
// That is: 0xCCb478bBA9c76AE21e13906A06aeb210ad3593cf

themselves!
bitVoteMessageRepeat := bitVoteMessage
bitVoteMessageRepeat.From =

common.HexToAddress("0xCCb478bBA9c76AE21e13906A06aeb210ad3593cf")
bitVoteMessageRepeat.Payload = []byte{664111 % 256, 0, 0}
err = mngr.OnBitVote(bitVoteMessageRepeat)
require.NoError(t, err)

r, ok = mngr.Rounds.Get(664111)
require.True(t, ok)

}

© Coinspect 2024 14 / 24

FDC�002
Existing attestation index is duplicated

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

fdc-client/client/round/round.go

Description

The Index of the new attestation is added to the existing-attestation twice
when the method AddAttestation is called.

func (r *Round) AddAttestation(attToAdd *attestation.Attestation) bool
{

identifier := crypto.Keccak256Hash(attToAdd.Request)
att, exists := r.attestationMap[identifier]
if exists {

att.Fee.Add(att.Fee, attToAdd.Fee)
if attestation.EarlierLog(attToAdd.Index(),

att.Index()) {
att.Indexes = utils.Prepend(att.Indexes,

attToAdd.Index())
}
att.Indexes = append(att.Indexes, attToAdd.Index())

© Coinspect 2024 15 / 24

return false
}

Note the scenario where the innermost if-condition is true and the attToAdd
index is smaller than the existing attestation. In that case, the attToAdd index
is prepended to the list of indexes of the attestation. Immediately afterwards,
it is appended.

The result is that the previous value is sandwiched between two values of the
new attestation to add.

This has no impact in the code under-review as only the head of the Indexes
slice is accessed. The getRequestController uses the whole slice, but it is out
of scope for this review as it is under construction.

Recommendation

Add an else branch to avoid appending the indexes when they were
prepended.

Status

Fixed in commit ea4bf7f6ef5b282d2deffd96056dc812814e11e5. /--

© Coinspect 2024 16 / 24

FDC�003
Clients cannot defend against malicious
verifier server

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

Description

A malicious or malfunctioning verifier server can delay their responses or send
requests that are too big for the client to handle, which would cause the client
to be delayed and potentially miss rounds. Notice the similarity with FDC-005.

The likelihood of this issue is low because it requires a malfunctioning
implementation of a verifier server or a verifier server that is malicious in its
own right. It is unlikely for a downright malicious verifier server to carry out
this attack, as they could simply provide erroneous responses.

Nevertheless, a bug in the implementation of verifier servers is still possible.

Recommendation

© Coinspect 2024 17 / 24

Implement measures to limit the impact of a malfunctioning verifier server
such as timeouts and limiting how much data from the request is read.

Status

Fixed in commit 725c1ed89cbaaccfc69e4731b79e0e640c9e2348. The FDC client
now implements a timeout and reads only 10MB of data from the response of
the verifier server.

© Coinspect 2024 18 / 24

FDC�004
Client cannot aggregate responses from
different verifier servers

Status

Solved

Resolution

Deferred

Risk
None

Impact
Recommendation
Likelihood
_

Location

Description

FDC clients should be able to configure redundant verifier servers to be able
to protect themselves from a potentially malicious verifier server.

While verifier servers were assumed to be honest for this review, the clients
can relax this assumptions by adding the possibility of querying N different
verifiers from the client. Client operators could then decide a threshold M
where N out of M verifiers need to agree on the response for the client to
accept it as the canonical response.

This would allow clients to not have to absolutely trust a single verifier server.
Instead, N out of the M chosen servers must be evil for the verifier to vote
with a wrong attestation.

© Coinspect 2024 19 / 24

Recommendation

Implement the logic to support N-out-of-M attestation verification.

Status

The Flare team has acknowledged that this would allow clients to be more
certain of the correctness of the responses from the verifiers servers, but that
nevertheless at this stage of the product clients need to communicate with
verifiers that return the correct response. This improvement will be
considered in future updates.

© Coinspect 2024 20 / 24

FDC�005
Clients show local non-determinism in
consensus code

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

fdc-client/client/attestation/bitVotes/branchAndBoundVotes.go

Description

Clients can trigger a race-condition on the algorithm that decides the
canonical bitvote. While the global-result is assured to be deterministic due to
how the the BranchAndBound algorithm works; a locally-observable race
condition is triggered. If subtleties about the underlying algorithm change, this
could lead to voters not being able to reach consensus on the bit vote.

To understand the issue it is important to understand that the set of voters of
a round must reach a single canonical bitvector that represents the
attestations they are willing to provide a resolution for in a given round. The
FDC implements a Branch and Bound strategy for deciding which attestations
are included after prefiltering some that will always be included in the round
and some that will never be.

https://en.wikipedia.org/wiki/Branch_and_bound

© Coinspect 2024 21 / 24

The FDC will attempt to either use BranchAndBoundVotes or BranchAndBoundBits,
depending on the length of the slices of votes and bits, respectively. In any
case, a similar process is fired up: two go routines with slightly different
strategies are started and waited for in the main thread.

What follows is a highly simplified snippet of the relevant code, in a Go-like
pseudocode:

solutions := make(Solution, 2)
done1 := make(chan bool, 1)
done2 := make(chan bool, 1)
go func() {
 solution := BranchAndBound(...)
 solutions[0] = solution
 done1 <- true
 if solution.Optimal {
 solutions[1] = nil
 done2 <- true
 }
}
go func() {
 solution := BranchAndBound(...)
 solutions[1] = solution
 done2 <- true
}

<-done1
<-done2
if solutions[0] == nil { return solutions[1] }
if solutions[1] == nil { return solutions[0] }
if solutions[0] < solutions[1] { return solutions[1] }
return solutions[0]

Note that while both gorutines write to the same array, the main write (that of
the solution) is always in different indexes, making the concurrent write safe.

Nevertheless, there is one instance when a concurrent write happens to the
same variable: when the first solution is Optimal, solution[1] is marked as nil.

The problem then arises when:

 A client fires up the two gorutines, first and second.
 first and second send to done1 and done2 respectively at approximately

the same time
 Now there's a race condition between the main thread to read from

solutions[1] and first to write nil to it

While a race conditions does happen, under the current BranchAndBound
algorithm the end result of the method is deterministic. This happens because
if the solution is Optimal, then solutions[0] >= solutions[1], making the last
if condition false, and thus returning solutions[0]; the same result that would
be observed without the race condition.

https://go.dev/ref/spec#Variables

© Coinspect 2024 22 / 24

Nevertheless, this behavior is not due to an invariant held in the
BranchAndBoundDouble method and is instead dependent on the underlying
BranchAndBound algorithm, making it risky as consensus code. Consider what
would happen if something changed in the underlying implementation:

On some clients, solutions[1] will be marked as nil before they reach the if-
switch at the bottom of the method. For those clients, they will always returns
solutions[0].

On other clients, solutions[1] will not be nil. If solutions[1] is bigger than
solutions[0], solutions[1] will be returned. Note that this is equivalent to the
process when the first solution is not optimal.

Recommendation

Do not write to the same variable on two different gorutines and always wait
for the whole gorutine process to finish before unlocking the main thread.

In practice, this can be achieved by the introduction of a third variable that
indicates that the solution[1] should be ignored and by unlocking the main
thread only after the if condition that checks if the solution is optimal.

...
go func() {
 solution := BranchAndBoundVotes(...)
 solutions[0] = solution
 if solution.Optimal {
 ignoreSecondSolution = true
 done2 <- true
 }
 done1 <- true
}

Note that more changes would be necessary: the if conditions below the
gorutines should be modified to check the ignoreSecondSolution flag. The
done2 channel should be waited on first to avoid a potential deadlock where
done2 is ready first on the second gorutine, but the done2 on the first gorutine
cannot be sent becaues the channel is full, thus never sending on done1.

Status

Flare has fixed the race condition by adding the ignoreSecondSolution
variable. It is worth noting that the fix implemented does not exactly match
what was described by Coinspect, although it avoids writing to the same
variable on two different gorutines.

© Coinspect 2024 23 / 24

There's still a possible race-condition where reading from the
ignoreSecondSolution variable.

On an additional fix commit 0c9fcdd5993d097f48cdc0a21d35b61fbd01441b, Flare
has totally removed the race condition by slightly changing the solution
describe above so that the firstDone signal is only sent when
ignoreSecondSolution has been either marked true or false. Tests with the
Golang race detector do not trigger a race and reviewers found no way one
could be triggered.

© Coinspect 2024 24 / 24

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

