
Transaction Verifier
Source Code

Security Review

© Coinspect 2024 1 / 16

Transaction Verifier
Source Code Review

Version: v240516 Prepared for: Flare May 2024

Source Code Review

1. Executive Summary

2.3 Solved issues & recommendations

3. Scope

4 Assessment

4.1 Security assumptions

4.2 Decentralization

4.3 Code Quality & Testing

5. Detailed Findings

FTXV-001 - Contract logic executed with zero data is
always considered a native transfer

© Coinspect 2024 2 / 16

FTXV-002 - Add warning or error string to notify users a
checksum failure

FTXV-003 - Alert users when calling already known
malicious contracts

6. Disclaimer

© Coinspect 2024 3 / 16

1. Executive Summary

In March 2024, Flare engaged Coinspect to conduct a security review of the
Transaction Verifier implementation. The primary goal of this project was to evaluate
the security of the script that users will execute before signing transactions. This script
parses and interprets a transaction's payload into a human-readable format, enabling
users to verify all the transaction parameters before signing. This process is crucial for
preventing blind signing and unintended interactions with undesired contracts.

Solved Caution Advised Resolution Pending

High

1
High

0
High

0

Medium

0
Medium

0
Medium

0

Low

0
Low

0
Low

0

No Risk

2
No Risk

0
No Risk

0

Total

3
Total

0
Total

0

Coinspect identified one high-risk issue showing how the verifier fails to flag contract
calls with zero data, bypassing the contract's address detection.

https://flare.network/
https://www.coinspect.com/

© Coinspect 2024 4 / 16

2. Summary of Findings

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

FTXV-001 Contract logic executed with zero data is always considered a
native transfer High

FTXV-002 Add warning or error string to notify users a checksum failure None

FTXV-003 Alert users when calling already known malicious contracts None

© Coinspect 2024 5 / 16

3. Scope

The scope was set to be the repositories:

Tx Verifier as of commit 0e5983aaec2fdecc6497500b05ce7787d06d38cc.
Tx Verifier Lib as of commit 629a989fa7133f61190ab4279b67ba2f480d0329.

https://github.com/flare-foundation/flare-tx-verifier
https://github.com/flare-foundation/flare-tx-verifier-lib

© Coinspect 2024 6 / 16

4 Assessment

The transaction verifier library provides the logic and the infrastructure used by the
transaction verifier. This library provides a command line interface enabling users to
verify their transactions. Users can make the verification process before signing to
prevent or mitigate the risks of the following adversarial scenarios when signing:

Unauthorized tampering with transaction parameters or deceptive attempts related
to the message to be signed.
The absence of a clear and human-readable interface showing the transaction's
content and parameters to sign, which would ultimately require a blind signature.
Uncertainty about the nature and security of the contract being called.

To mitigate these risks, the transaction verifier deconstructs a transaction's payload
into key parameters, aiding users in understanding exactly what they are signing. Its
architecture supports transaction verification on EVM, P, and C subnet-like chains (e.g.,
AVAX).

4.1 Security assumptions

The system is a barrier meant to be used prior to a user's signing stage. This system
does not take care of any signature made afterwards since it does not implement any
wallet-like interface. Additionally, it is assumed that users provide the transaction data
they intend to sign, which is not modified later before signing.

4.2 Decentralization

The verifier flags contract calls that are made to foreign contracts (not deployed by
Flare). Because of this, the tool requires some sort of maintenance by the Flare Team
as they need to provide an updated list of their contract addresses and interfaces.

4.3 Code Quality & Testing

© Coinspect 2024 7 / 16

The verifier library repository includes several test-case scenarios using transactions
of different types, chains, and destinations, calling a vast array of contracts and
functions. The test script was easy to run and modify, allowing Coinspect to validate
several scenarios checking the verifier's behavior.

© Coinspect 2024 8 / 16

5. Detailed Findings

FTXV-001

Contract logic executed with zero data is
always considered a native transfer

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

src/evm/index.ts

Description

The verifier assumes that calls with no data (0x) are always a native token transfer
on EVMs. Because of this, any call made with zero data to a contract with a
fallback/recieve function that executes further logic will bypass the contract's
call detection. This misinterpretation could make unsuspecting users believe that

© Coinspect 2024 9 / 16

they are simply making a transfer but, instead, arbitrary logic could be executed
from the fallback/recieve function:

function _getType(tx: Transaction): string {
 if (utils.isZeroHex(tx.data)) {
 return txtype.TRANSFER_C;
 } else {
 return txtype.CONTRACT_CALL_C;
 }
}

A practical example of a contract within the Flare Ecosystem that executes logic
with zero data is WNat:

/**
 * A proxy for the deposit method.
 */
receive() external payable {
 deposit();
}

Then, the system will not try to retrieve any contract data since it has an early
return, when the transaction is not a contract call:

 if (_getType(tx) !== txtype.CONTRACT_CALL_C) {
 return {};
 }

The impact of this issue is considered high, as unsuspecting users might be
deceived into believing they are not executing any contract logic when, in fact, they
are. Regarding likelihood, the issue occurs spontaneously without requiring any
specific conditions other than calling a contract that implements a payable
fallback or receive function with zero data.

Recommendation

Ensure that the call's destination does not have deployed code.

Status

Fixed in commit 10cac15b9816f31c3bf77d1177ab9e9b8bae4615.

© Coinspect 2024 10 / 16

An enhanced mechanism for determining the transaction's type was added to the
_getType() function. This function now checks whether the destination has
deployed code and considers the chain where the transaction originated.

Proof of Concept

A test was conducted using a transaction designed to execute the receive()
function of the WNat contract (located at
0xc67dce33d7a8efa5ffeb961899c73fe01bce9273 on Coston2).

The verifier incorrectly interpreted this as a native transfer rather than identifying
it as a contract call, which would execute the deposit() function. This
misclassification should lead to a failed transaction since it involves executing
contract logic, not a native token transfer.

Output

Test 1/1: passed
 Input: 0x02f47235850c5115f1008517f551650082520894
 c67dce33d7a8efa5ffeb961899c73fe01bce9273880de0b6b3a764000080c0808080
 Transaction verification: {
 "network": "Flare Testnet Coston2",
 "type": "transferC",
 "description": "Funds transfer on C-chain",
 "recipients": [
 "0xc67dce33d7a8efa5ffeb961899c73fe01bce9273"
],
 "values": [
 "1000000000000000000"
],
 "fee": "2160900000000000",
 "warnings": [],
 "messageToSign":
"0xf694b4f08049d72fb1aea1e88cada1c40ea4ce99514a0ad9cd6d128ef351c619"
}

Transaction

 {
 "txHex": "0x02f47235850c5115f1008517f551650082520894

c67dce33d7a8efa5ffeb961899c73fe01bce9273880de0b6b3a764000080c0808080",
 "txVerification": {
 "network": "Flare Testnet Coston2",
 "type": "transferC",
 "description": "Funds transfer on C-chain",
 "recipients": ["0xc67dce33d7a8efa5ffeb961899c73fe01bce9273"],

© Coinspect 2024 11 / 16

 "values": ["1000000000000000000"],
 "fee": "2160900000000000",
 "warnings": [],
 "messageToSign":
"0xf694b4f08049d72fb1aea1e88cada1c40ea4ce99514a0ad9cd6d128ef351c619"
 }
 }

© Coinspect 2024 12 / 16

FTXV-002

Add warning or error string to notify users a
checksum failure

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

src/warning.ts

Description

When verifying an address of a transaction (either recipient or a parameter), the
system fails the validation if its checksum is invalid. However, there are no clear
error messages or warnings alerting users upon this event.

Therefore, users have to compare the submitted values with the expected ones to
identify what triggered the failure. This breaks the secure user experience,
degrading the verification functionality.

Recommendation

© Coinspect 2024 13 / 16

Add a warning or error string to the validation failure explaining the failure reason.

Status

Fixed on commit 10cac15b9816f31c3bf77d1177ab9e9b8bae4615.

Address checksum is now included into the system.

© Coinspect 2024 14 / 16

FTXV-003

Alert users when calling already known
malicious contracts

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

src/evm/contract/index.ts

Description

Unsuspecting users may inadvertently interact with a known malicious contract,
unknowingly putting their assets at risk.

The verifier retrieves contract data from the explorer when the contract's address
is not listed in Flare's Registry. Although it flags that the contract is not part of the
Flare Contracts, the process currently lacks a mechanism to alert users that they
are engaging with a contract already identified as malicious.

export async function getContractData(
 network: number,
 address: string
): Promise<ContractData | null> {
 let data = _getDataFromRegistry(network, address)

© Coinspect 2024 15 / 16

 if (data == null) {
 data = await _getDataFromExplorer(network, address)
 }
 return _toContractData(network, data)
}

async function _getDataFromExplorer(
 network: number,
 address: string
): Promise<AbiContractData | null> {
 return explorer.getContract(network, address)
}

Recommendation

Include a mechanism to compare the contract's address with a block-list and raise
a warning if users interact with those contracts.

Status

Acknowledged.

© Coinspect 2024 16 / 16

6. Disclaimer

The information presented in this document is provided “as is” and without warranty.
Security Audits are a “point in time” analysis, and as such, it's possible that something
in scope may have changed since the tasks reflected in this report were executed. This
report shouldn't be considered a perfect representation of the risks threatening the
analyzed systems and/or applications in scope.

