
Flare

Top Level Client
Security Review

© Coinspect 2024 1 / 27

Top Level Client
Source Code Security Review

Version: v240515 Prepared for: Flare May 2024

Source Code Security Review

1. Executive Summary

2.2 Findings where caution is advised

2.3 Solved issues & recommendations

3. Scope

4 Assessment

4.1 Security assumptions

4.2 Testing

4.3 Additional Fixes

5. Detailed Findings

TOP-01 - Evil voter can vote in rounds with no weight

© Coinspect 2024 2 / 27

TOP-02 - Rogue voter can vote for all merkle roots

TOP-03 - Voters are incentivized to withhold their
signatures

TOP-04 - Malicious voter can always be a finalizer

TOP-05 - Different signing policies have the same hash

TOP-06 - Private keys are not sufficiently protected

6. Disclaimer

© Coinspect 2024 3 / 27

1. Executive Summary

In January 2024, Flare engaged Coinspect to perform a source code review of its Top
Level Client. The objective of the project was to evaluate the security of the
application, which is a critical off-chain component of the Flare Systems Protocol.

The Top Level Client is in charge of requesting data from each subsystem in the
protocol and forwarding it to the blockchain, as well as monitoring the on-chain
submission of signatures and relaying those once the threshold has been met. It also
needs to handle registration for voters.

Solved Caution Advised Resolution Pending

High

2
High

0
High

0

Medium

1
Medium

1
Medium

0

Low

1
Low

1
Low

0

No Risk

0
No Risk

0
No Risk

0

Total

4
Total

2
Total

0

TOP-01 describes how a malicious voter can vote in rounds where they have no weight.
TOP-02 shows how the same voter can sign for different Merkle roots, highlighting how
this strategy undermines the objectives of the system. TOP-03 and TOP-04 outline key
incentive problems within the system that result in honest participants being deprived
of rewards and subvert the system's incentives. TOP-05 demonstrates how different

https://coinspect.com/

© Coinspect 2024 4 / 27

signing policies can result in identical hashes. TOP-06 addresses concerns related to
private key management.

© Coinspect 2024 5 / 27

2. Summary of Findings

2.2 Findings where caution is advised

These issues have been addressed, but the risk they pose has not been fully mitigated.
Any future changes to the codebase should be carefully evaluated to avoid
exacerbating these issues or increasing their probability.

Findings with a risk of None pose no threat, but document an implicit assumption which
must be taken into account. Once acknowledged, these are considered solved.

Id Title Risk

TOP-05 Different signing policies have the same hash Medium

TOP-03 Voters are incentivized to withhold their signatures Low

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

TOP-01 Evil voter can vote in rounds with no weight High

TOP-02 Rogue voter can vote for all merkle roots High

TOP-04 Malicious voter can always be a finalizer Medium

TOP-06 Private keys are not sufficiently protected Low

© Coinspect 2024 6 / 27

3. Scope

The scope was set to be the repository at flare-system-client on commit
436f7cd55c4f79f7e8213ede57731360fe53be74.

It is worth noting that the Top Level Client is one part of a more complex system,
which involves an indexer, several off-chain subsystems which provide data to the top
level client and a set of smart contracts. This document focuses only in the Top Level
Client.

https://github.com/flare-foundation/top-level-client/

© Coinspect 2024 7 / 27

4 Assessment

The Top Level Client has three well defined modules, each in charge of fulfilling one of
the keys responsibilities of the software:

1. The finalizer module: Handles the collection of signatures and their submission
to the Relay contract.

2. The protocol module: Manages communication with subprotocols and submits
data in the form of calldata to the Submission contract.

3. The registration module: Oversees the registration of new voters in the
system.

Note that interactions with the Top Level Client from an attacker's perspective are
limited, as the system only reads data from an indexed database containing blockchain
data. This means that an attacker would need to insert their payloads in the blockchain
itself. Nevertheless, it is important to acknowledge that this is fairly easy for an
attacker, as the system relies on calldata information to coordinate its actions. That
means that the smart contracts themselves avoid doing any validation when possible.

With that in mind, Coinspect considered the main and highest priority threat to be an
evil voter, as the voter set if fully open to anyone with sufficient stake. An evil voter
might want to:

1. Gain unfair advantage over other voters to claim bigger rewards or claim them
more often

2. Crash or slow down other voters so as to prevent finalization of data

Additionally, Coinspect considered issues related to secrets management,
cryptographic operations, and software bugs that could impair the functionality of the
service.

4.1 Security assumptions

As the Top Level Client is simply a part of a broader system, it assumes other
components work correctly in order to function. In particular, Coinspect assumed that:

1. The indexer provides accurate and up-to-date data.
2. The subprotocol clients work reliably and provide accurate data.

© Coinspect 2024 8 / 27

3. The majority of the staking-vote submits accurate data and voters do not collude
4. The majority of the staking-vote adequately protects its private keys
5. The signing-policy is set by a trusted entity which submits the signing-policy in

time and with correct data

Subprotocols must be aware of certain behaviors of the top level client and the
protocol as a whole. In particular, Coinspect found that subprotocols must be specially
careful with additionalData, as this data is malleable by anyone even when it is part of
a bigger structure associated with a particular signer.

4.2 Testing

Coinspect found almost no unit tests on the project, with only two modules having
significant coverage: voters and merkle.

; top-level-client (436f7cd) $ go test -coverprofile cov.out ./...
? flare-tlc/client/config [no test files]
? flare-tlc/client/context [no test files]
? flare-tlc/client/cronjob [no test files]
? flare-tlc/client/finalizer [no test files]
? flare-tlc/client/main [no test files]
? flare-tlc/client/protocol [no test files]
? flare-tlc/client/registration [no test files]
? flare-tlc/client/runner [no test files]
? flare-tlc/client/scheduler [no test files]
? flare-tlc/client/shared [no test files]
? flare-tlc/config [no test files]
? flare-tlc/database [no test files]
? flare-tlc/logger [no test files]
? flare-tlc/utils/chain [no test files]
? flare-tlc/utils/contracts/registry [no test files]
? flare-tlc/utils/contracts/relay [no test files]
? flare-tlc/utils/contracts/submission [no test files]
? flare-tlc/utils/contracts/system [no test files]
ok flare-tlc/client/shared/voters 0.009s coverage: 79.7% of
statements
ok flare-tlc/utils 0.001s coverage: 7.3% of statements
ok flare-tlc/utils/merkle 0.007s coverage: 93.9% of statements

4.3 Additional Fixes

On April 8, 2024, Coinspect reviewed additional changes and features as of commit
c6096b0492b780c207f7e760b34bf2b3892dfffb.

Flare indicated that the most relevant changes made from the original commit were:

© Coinspect 2024 9 / 27

Gas price and gas limits can now be configured
Votes for future epochs are now skipped
It is possible to specify a separate sender for submitting signatures
Value 0 for starting_voting_round configuration option now means the current
voting round
The system allows specifying data fetch retries and timeouts for all submitters in
configuration files
Skip sending submit transactions if no payload was received from a client
Added dry-run for sending certain transactions

© Coinspect 2024 10 / 27

5. Detailed Findings

TOP-01

Evil voter can vote in rounds with no weight

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

client/finalizer/finalizer_client.go

Description

An attacker can call submitSignatures for a voting round that does not yet exist,
and the client will treat it as a vote using the last signing policy. This loophole
allows an evil voter to cast votes for future data under the current signing policy.

The full impact of this vulnerability varies by subprotocol and depends on how far
in advance realistic merkle roots for a future round can be prepared by a voter. A
generalized version of this attack involves inspecting the blockchain and front-

© Coinspect 2024 11 / 27

running votes for the next roundId if the signing policy is about to change and is
unfavorable to the attacker.

To exploit this vulnerability, an attacker needs to call submitSignatures with a
votingRoundId that is higher than the current one. The client periodically checks
transactions to submitSignatures and will invoke ProcessSubmissionData as soon
as it detects a new transaction.

ProcessSubmissionData will attempt to retrieve the signing policy for the
votingRoundId specified in the payloadItem and, if successful, add the item to the
submissionStorage:

// ! Try to find the signing policy for the payload of
voting round

sp :=
c.signingPolicyStorage.GetForVotingRound(payloadItem.votingRoundId)

if sp == nil {
first := c.signingPolicyStorage.First()
if first != nil && payloadItem.votingRoundId <

first.startVotingRoundId {
// This is a submission for an old

voting round, skip it
continue

}
return fmt.Errorf("no signing policy found for

voting round %d", payloadItem.votingRoundId)
}
addResult, err :=

c.submissionStorage.Add(payloadItem.payload, sp)

The issue lies in the implementation of GetForVotingRound. This method calls
findByVotingRoundId, which has a quirk: it returns nil only if the passed
votingRoundId is smaller than all the possible votingRoundIds. If not, it returns the
last element of the list.

func (s *signingPolicyStorage) findByVotingRoundId(votingRoundId
uint32) *signingPolicy {

i, found := sort.Find(len(s.spList), func(i int) int {
return cmp.Compare(votingRoundId,

s.spList[i].startVotingRoundId)
})
if found {

return s.spList[i]
}
if i == 0 {

return nil
}
return s.spList[i-1]

}

© Coinspect 2024 12 / 27

Even though the SigingPolicy for that round does not exist yet, it will be used to
consider the weight of the voter, as seen in the Add() method for the
submissionStorage:

message.weight += sp.voters.VoterWeight(voterIndex)

Recommendation

Do not accept votes for rounds in the future. This can be implemented easily by
making findByVotingRoundId return nil always when the item was not found.

If this needs to be implemented to avoid posting the same signingPoliciy when it
has not changed, delete votes for rounds to-come when a new signing policy is
received.

Status

Fixed on commit 32a6c3a3a6cfe0b65390c8b65f29ea7baa67bf9c of the
https://github.com/flare-foundation/flare-system-client repository.

The signing process now retrieves the threshold of the active signing policy and
ignores future voting rounds. Additionally, when a voting round is beyond the
expected end of the last registered epoch, the client attempts to get more than
the 60% of the voting weight before sending the data.

Proof of concept

func TestFindByVotingRoundId(t *testing.T) {
newSp := func(rewardEpochId uint32) *signingPolicy {

return &signingPolicy{
rewardEpochId: int64(rewardEpochId),
startVotingRoundId: rewardEpochId + 100,
threshold: 200,
seed: big.NewInt(42),
rawBytes: []byte{0x42},
blockTimestamp: 99999,
voters: voters.NewVoterSet(

[]common.Address{common.HexToAddress("0xc2f249642d3c7bcf1380ccc20374c0f
516d2f8fe")},

[]uint16{uint16(rewardEpochId)},
),

https://github.com/flare-foundation/flare-system-client

© Coinspect 2024 13 / 27

}
}

storage := newSigningPolicyStorage()
for i := 100; i < 400; i++ {

err := storage.Add(newSp(uint32(i)))
if err != nil {

t.Error(err)
}

}

// Note that findByVotingRoundId "lies" and will tell us that a signing
policy

// is non-nil for a policiy that does not exist yet.
// This will make the SubmissionStorage use this policy for the

submission
// while counting the weight for a p.message.votingRoundId

which is in the future
expected := 500
result := storage.findByVotingRoundId(uint32(expected))
if result.startVotingRoundId != uint32(expected) {

t.Errorf("expected: %d, got: %d", expected,
result.startVotingRoundId)

}
}

© Coinspect 2024 14 / 27

TOP-02

Rogue voter can vote for all merkle roots

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

client/finalizer/submission_storage.go

Description

A malicious voter can exploit the submitSignature function to vote for each merkle
root that appears, thereby ensuring they receive rewards for participating in the
protocol. This not only guarantees rewards for the malicious voter but also
incentivizes all voters to vote for each message indiscriminately. Such behavior
complicates reaching a consensus that accurately reflects true facts.

To better understand the issue, it's important to recall the process by which voters
send data to submitSignature. The data is encoded into a messageData struct by the
Top Level Client:

type messageData struct {
payload []*signedPayload
weight uint16

© Coinspect 2024 15 / 27

signingPolicy *signingPolicy
}

The vector of messageData is stored in a map called vrMap in the
submissionStorage, which is a nested map from (votingRoundId, votingRoundKey,
messageHash) -> messageData.

type votingRoundKey struct {
protocolId byte
messageHash common.Hash

}

type votingRoundItem struct {
msgMap map[votingRoundKey]*messageData

}

type submissionStorage struct {
// Map from voting round id to voting round item, a map from

(protocol id, message hash) to message data
// We use two maps instead of one to make it easier to remove a

voting round
vrMap map[uint32]*votingRoundItem

// mutex
sync.Mutex

}

To tally up the votes and trigger finalization, the weight of each message is
counted. A crucial invariant that must be held is that voters should not be able to
duplicate their voting weight by voting for the same (votingRoundId,
votingRoundKey, messageHash) more than once. This is enforced through the
following lines:

voterIndex := sp.voters.VoterIndex(p.signer)
if voterIndex < 0 {

return addPayloadResult{}, fmt.Errorf("signer %s is not
a voter", p.signer.Hex())

}
if message.payload[voterIndex] != nil {

return addPayloadResult{added: false}, nil // already
added

}

p.index = voterIndex
 thresholdAlreadyReached := message.thresholdReached()

message.payload[voterIndex] = p

The code snippet checks the index of the signer in the signedPayload according to
the signing policy. If the signer is a valid voter, their index is used to determine
whether their payload has already been added to message.payload. If not already
added, the payload p is assigned to message.payload[voterIndex].

© Coinspect 2024 16 / 27

However, this system does not consider votes for other messages: a voter can
vote for several messageHash entries under the same (votingRoundId,
votingRoundKey) without any restrictions, allowing them to vote multiple times for
different messages with no penalty.

Recommendation

Ensure that when a voter casts a new vote, their voting weight is removed from
any previous vote they have made. This prevents the accumulation of influence
from multiple votes within the same voting round.

Status

Fixed.

This issue was addressed at the reward calculation layer, which is beyond the
scope of this review. To further mitigate the problem, implementing penalties for
double signing during reward allocation has been recommended.

© Coinspect 2024 17 / 27

TOP-03

Voters are incentivized to withhold their
signatures

Status

Caution Advised

Resolution

Acknowledged

Risk
Low

Impact
Low
Likelihood
Medium

Location

client/finalizer/submission_storage.go

Description

A malicious voter can exploit the relay function by withholding their signature
until their contribution causes the combined signature set to reach the threshold
for finalization. Although this constitutes merely a griefing attack with minimal
impact (since finalization would occur regardless), it encourages high-stake voters
to delay publishing their signatures to avoid being preempted and to potentially
secure more rewards. Rewards are distributed based on the stake of the first
caller to relay, thus subverting the intended incentives: high-stake voters are
motivated to wait as long as possible to minimize the risk of being
outmaneuvered.

To illustrate this attack, let V be a malicious voter:

© Coinspect 2024 18 / 27

1. V, a low-stake voter within the voting set selected to finalize the current
round, participates normally in subprotocols, executing submit1 and submit2
as required.

2. V monitors submitSignatures but does not reveal their own signatures.
3. V waits until the sum of the weights of the collected signatures plus the

weight of their own signature is sufficient to exceed the threshold for
finalization.

4. At this critical point, V calls relay with everyone's signatures, including their
own, thus securing the first caller advantage.

This behavior is currently not subject to penalties as the relay method cannot
verify whether signatures were previously disclosed via submitSignatures—this
information exists solely in calldata.

Moreover, even if a mechanism to impose penalties were devised, V could
circumvent it using a smart contract that combines the submission and relay steps
into a single transaction:

function attack(submitSignaturePayload bytes, relayPayload bytes)
public {
 submissionContract.call(submitSignaturePayload);
 relayContract.call(relayPayload);
}

In fact, this attack strategy is particularly effective as it allows the attacker to earn
rewards both for submitting a signature for the root that is going to be finalized
and for being the one to finalize it.

While the attack itself does not pose a substantial immediate risk, its long-term
consequences are significant: it can undermine the overall protocol. As mentioned
earlier, higher-stake voters are motivated to maximize their rewards.
Consequently, they tend to delay publishing their signatures as long as possible,
which in turn delays the finalization process.

Recommendation

Consider implementing a single-leader scheme to mitigate manipulation by
delaying signature submission. Additionally, revising the reward system so that it
does not depend on who deposits first could reduce the incentive for this type of
gaming.

Status

© Coinspect 2024 19 / 27

Acknowledged.

Flare has stated that the risk is mitigated through their reward calculation system.
According to them, finalizers will receive special rewards only if they make their
call after a designated grace period, which should discourage premature and
strategic submissions.

© Coinspect 2024 20 / 27

TOP-04

Malicious voter can always be a finalizer

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
High

Location

client/shared/voters/voter_set.go

Description

A voter aiming to maximize their rewards can manipulate their position in the
voter list to be selected as a finalizer more frequently. This is achieved by
calculating which voter indexes are likely to be selected to finalize rewards, then
brute-forcing addresses until one achieves a desired position when sorted
lexicographically. The voter can then update their signing address to this
strategically advantageous address.

To understand how this vulnerability can be exploited, consider two key facts:

1. Selection of Finalizers: Privileged finalizers are selected using an algorithm
whose output can be predicted but not directly influenced by voters. This
algorithm utilizes a hash(protocolId, votingRoundId) to select specific
indexes from the voting set.

© Coinspect 2024 21 / 27

2. Updatable Voting Set: The voting set consists of signing addresses that are
sorted l exicographically and can be updated by the voters' identity
addresses, as per the specification:

voters - the list of eligible voters in canonical order (lexicographic
order). These are the signing addresses of voter entities.

Given these factors, the algorithm's predictability allows a voter to anticipate
which indexes will be chosen. Although the algorithm itself cannot be directly
influenced, the set it selects from can be manipulated. A malicious voter can thus
gain an unfair advantage by calculating the advantageous indexes, creating
addresses until one falls into the correct position, and updating their signing
address accordingly for each reward epoch.

Additionally, consider how an attacker might combine this strategy with the
vulnerabilities described in TOP-03 to further exploit the system.

Recommendation

Use a Verifiable Random Algorithm to generate the indexes of the voters that are
selected to be finalizers in this round. This would ensure that the random value is
not liable to be predictable.

Consider implementing limits in how often signing addresses can be updated.

Status

Fixed.

The finalizer subset of voters is generated based on the secure random seed of
the current signing policy. As long as the random number provided by the
contracts is secure, there is no exploit scenario for this issue.

https://eth2book.info/capella/part2/building_blocks/randomness/

© Coinspect 2024 22 / 27

TOP-05

Different signing policies have the same hash

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
Low
Likelihood
High

Location

client/registration/system_manager_utils.go:96

Description

Because of how the SigningPolicy hash is constructed, different signing policies
result in the same hash. This is known as a existencial forgery vulnerability. The
precise impact of this vulnerability is hard to gauge, as it depends on how the hash
and the resulting signature constructed from it are interpreted by smart contracts.
Nevertheless, by itself it represents a misconstruction of the hashing function, as a
core property for hashes it that finding collisions should be hard.

The root cause can be found in the function SigningPolicyHash() which calculates
a hash of the signingPolicyBytes byte array.

It applies 0-padding to the input data to a 32-byte boundary using 0x00 bytes
appended at the end of the array in this way:

https://en.wikipedia.org/wiki/Digital_signature_forgery

© Coinspect 2024 23 / 27

if len(signingPolicy)%32 != 0 {
signingPolicy = append(signingPolicy, make([]byte, 32-

len(signingPolicy)%32)...)
}

Due to this 0-padding process, by appending 0x00 to the initial input data and
hashing it, you may create multiple (up to 32) signing policies sharing the same
hash by appending zeroes. Since this hash serves as the basis for policy signing,
one signature could potentially validate numerous distinct signing policies.

Recommendation

Avoid adding padding to your input data since the library functions already handle
input padding correctly. If possible, opt for a standard hash function such as
crypto.Keccak256(), rather than implementing custom hashing methods like
SigningPolicyHash(). This way, you can ensure that the entire signingPolicy byte
array gets properly hashed.

Status

Acknowledged.

The Flare Team stated that in general terms this could be an addressable issue.
However, since signing policies are not blindly hashed but verified by the Relay
smart contract, the case shown does not happen.

Proof of concept

func TestSigningPolicyHashCollision(t *testing.T) {
signingPolicy := []byte{

0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,

0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,

0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,

0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,

0x42, 0x00,
}

signingPolicy2 := []byte{
0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,

© Coinspect 2024 24 / 27

0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,

0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,

0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,

0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,
0x42,

}

hash1 := SigningPolicyHash(signingPolicy)
hash2 := SigningPolicyHash(signingPolicy2)

if reflect.DeepEqual(hash1, hash2) {
t.Error("different payloads should not result in same

hash")
}

}

© Coinspect 2024 25 / 27

TOP-06

Private keys are not sufficiently protected

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

Description

Attackers can leverage the fact that the private key guarding voting weights are
not correctly protected, and even operators willing to support safer guards are not
allowed to do so with the current implementation.

By leveraging the fact that the key is stored in text files, attackers that get access
to certain amount of stake can trivially post erroneous data to the protocol.

While the system correctly considers keys intended for cold storage (identity
keys) and those meant for hot storage, the hot storage keys do not support basic
security measures such as being able to be stored in a secure secret storage.

It is worth noting that the separation between cold storage and hot storage is
discouraged by the protocol itself, as keys intended for day-to-day communication
with the blockchain are, by default, set to the cold-storage key according to the
specifications:

© Coinspect 2024 26 / 27

In addition, a voter can set prioritized submission addresses that are
used for communication with blockchain.
These include submit addresses and a submit signatures address. By
default, prioritized addresses are set to the identity address.

Recommendation

Make sure that keys can be stored as safely as possible while fullfiling their roles.
For hot-storage keys, that means at least supporting safer secret storage
providers such as AWS Secret Manager or Hashicorp. This can easily be achieved by
allowing keys to be read from the environment.

Additionally, make sure that no key for normal operations is set to be the one
intended for cold-storage. Reject registrations that try to reuse the identity
address for other purposes.

It is worth noting that when dealing with private keys there is always some risk of
compromise, but following this guidelines minimizes the risk and impact of a
compromise while at the same time remaining practical to implement.

Status

1. For private keys, this was fixed on commit
d8e8f61f9dc21f9cefba5ecfa12bf59445ca3056 of the https://github.com/flare-
foundation/flare-system-client repository, as the keys are now retrieved
from env variables.

Nevertheless, the X-API-Key protecting the communications with the ftso-
scaling server is missing these protections, as can be seen in the protocols.go
file.

XApiKey string `toml:"x_api_key"` // Value of the X-API-KEY header

2. Fixed on commit 2d3d97ccf102b3bec3e4f9f8ca115fa850585091 of the
https://github.com/flare-foundation/flare-system-client.

The server's API key is now retrieved from env variables.

https://github.com/flare-foundation/flare-system-client
https://github.com/flare-foundation/flare-system-client

© Coinspect 2024 27 / 27

6. Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover any on-chain systems or frontends that
communicate with the network, nor the general operational security of the organization
that developed the code.

