
Flare

FTSO Scaling
Security Review

© Coinspect 2024 1 / 19

FTSO Scaling
Source Code Security Review

Version: v240515 Prepared for: Flare May 2024

Source Code Security Review

1. Executive Summary

2.3 Solved issues & recommendations

3. Scope

4 Assessment

4.1 Security assumptions

4.2 Testing

4.3 Additional Fixes

5. Detailed Findings

FTSOS-001 - Attacker can access reveal data

© Coinspect 2024 2 / 19

FTSOS-002 - Attacker can force the reveal of wrong data
due to random data in reveal

FTSOS-003 - Attacker can force revealing of wrong data
by following reference price provider

FTSOS-004 - Possible to repeat hashes for different
rounds

FTSOS-005 - Unused utilities

6. Disclaimer

© Coinspect 2024 3 / 19

1. Executive Summary

In January 2024, Flare engaged Coinspect to perform a source code review of its FTSO
Scaling system. The objective of the engagement was to evaluate the security of the
application, which is in charge of coordinating price feeds obtained by the operators of
the system with the Flare Systems Client and providing proofs to end-users.

Solved Caution Advised Resolution Pending

High

2
High

0
High

0

Medium

1
Medium

0
Medium

0

Low

1
Low

0
Low

0

No Risk

1
No Risk

0
No Risk

0

Total

5
Total

0
Total

0

FTSOS-001, FTSOS-002 and FTSOS-003 all show how the lack of authentication in the
server leads to reveal data being public and also liable to be replaced by attackers.
FTSOS-004 shows that it is possible -- although unlikely -- to have the same commit
hash for different rounds.

https://coinspect.com/

© Coinspect 2024 4 / 19

2. Summary of Findings

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

FTSOS-001 Attacker can access reveal data High

FTSOS-002
Attacker can force the reveal of wrong data due to random

data in reveal High

FTSOS-003
Attacker can force revealing of wrong data by following

reference price provider Medium

FTSOS-004 Possible to repeat hashes for different rounds Low

FTSOS-005 Unused utilities None

© Coinspect 2024 5 / 19

3. Scope

The scope was set to be the repository at ftso-scaling on commit
783a7be11d6fdf7610dc2991471129d5b7f08ea0.

The review included all the components of the project, except those related to
rewards. As such,the following files and folders have been excluded from this review:

apps/ftso-reward-calculator/*
libs/ftso-core/src/rewards-calculation/*
libs/ftso-core/src/data-calculation-interfaces.ts
libs/ftso-core/src/utls/RewardClaim.ts
libs/ftso-core/src/utils/PartialRewardOffer.ts
libs/ftso-core/src/events/InflationRewardsOffered.ts

Methods dealing with rewards such as getRewardOffers in libs/ftso-
core/src/IndexerClient.ts are also excluded.

It is worth noting that the FTSO Scaling project is one part of a more complex system.
The correctness of the prices posted by voters require several other components to
work timely and correctly, including data feeds that need to be connected to the FTSO
Scaling project and are out of scope of the audit and the responsibility of voters to
implement. Coinspect did review an example implementation to be provided as
reference, but this reference is not intended to be put in production.

https://gitlab.com/flarenetwork/ftso-scaling

© Coinspect 2024 6 / 19

4 Assessment

The FTSO Scaling program is composed of one Next.js server which is the main piece
of software in charge of communication with the price providers and with the top-
level-client application. The server fetches data from the price providers on request
of the top-level-client and it is also in charge of assembling the merkle root of these
price feeds to be posted on the blockchain by the top-level-client.

It is worth noting that the program does not handle private keys: all the signing is done
in the top-level-client's scope.

There are libraries that the server uses for operations: fsp-utils deal with encoding
and decoding of data while fsp-core is a bigger library that holds core logic for the
application, including the ordering of the price feeds and calculation of the random
value.

Reviewers considered that the project was exposed to the Internet, as some endpoints
are clearly tagged as external. What is more, users need to contact a provider to get
the proof of their claims to be posted on chain.

4.1 Security assumptions

Some security assumptions were made when reviewing the project:

1. The top-level-client fetches data in a timely manner.
2. The price feeds set by the voter are accurate
3. The provider trusts the price feed software and the top-level-client software

4.2 Testing

Coinspect found that the project was well tested, with a 65% coverage by line. 86
tests pass in the project, while 2 integration tests are currently failing due to wrong
arguments being passed to functions:

© Coinspect 2024 7 / 19

 1) ftso-data-provider.service (test/apps/integration/ftso-data-
provider.service.test.ts)
 should return correct reveal data:
 TypeError: lru_cache_1.LRUCache is not a constructor
 at new FtsoDataProviderService (apps/ftso-data-provider/src/ftso-
data-provider.service.ts:2:4558)
 at Context.<anonymous> (test/apps/integration/ftso-data-
provider.service.test.ts:85:21)

2) ftso-data-provider.service (test/apps/integration/ftso-data-
provider.service.test.ts)
 should compute results - multiple voters, same price:
 TypeError: lru_cache_1.LRUCache is not a constructor
 at new FtsoDataProviderService (apps/ftso-data-provider/src/ftso-
data-provider.service.ts:2:4558)

4.3 Additional Fixes

In April 8, 2024 Coinspect reviewed additional changes and features as of commit
3de282a31c78dc85972bb004412dfa8dd375df0e. The scope did not change: the example
applications and the rewards components were not considered for this commit.

Flare indicated that the most relevant changes made from the original commit were:

Malformed submit transactions are now skipped instead of failing.
Improved edge case handling for the benching window.
Removed a failure on TIMEOUT when retrieving data from the indexer.

In addition to the changes outlined by Flare, an analysis of the differences between the
new commit and the originally reviewed version revealed numerous other
modifications to the codebase. Due to the extensive nature of these changes and their
integration with existing code, conducting an isolated analysis of each change is
impractical. Because of this, Coinspect focused the review on the changes specifically
outlined by Flare.

© Coinspect 2024 8 / 19

5. Detailed Findings

FTSOS-001

Attacker can access reveal data

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

apps/ftso-data-provider/src/ftso-data-provider.controller.ts

Description

An attacker can query the submit2/:votingRoundId/:submitAddress endpoint to
get the reveal data associated with the commit of votingRoundId.

This is because the submit2 endpoint does not check the timing of the request and
does not enforce that it is during the reveal epoch of the sub-protocol. Instead, the
reveal data is simply accumulated in a map when generated:

© Coinspect 2024 9 / 19

 async getCommitData(
 votingRoundId: number,
 submissionAddress: string
): Promise<IPayloadMessage<ICommitData> | undefined> {
 ...
 const hash = CommitData.hashForCommit(submissionAddress,
revealData.random, revealData.encodedValues);
 const commitData: ICommitData = {
 commitHash: hash,
 };
 this.votingRoundToRevealData.set(votingRoundId, revealData);
 ...
 }

And then retrieved and returned when the submit2 endpoint is called:

 async getRevealData(votingRoundId: number):
Promise<IPayloadMessage<IRevealData> | undefined> {
 this.logger.log(`Getting reveal for voting round
${votingRoundId}`);

const revealData = this.votingRoundToRevealData.get(votingRoundId);
 if (revealData === undefined) {
 // we do not have reveal data. Either we committed and restarted
the client, hence lost the reveal data irreversibly
 // or we did not commit at all.
 this.logger.error(`No reveal data found for epoch
${votingRoundId}`);
 return undefined;
 }

const msg: IPayloadMessage<IRevealData> = {
 protocolId: FTSO2_PROTOCOL_ID,
 votingRoundId: votingRoundId,
 payload: revealData,
 };
 return msg;
 }

Recommendation

Implement authentication so only the top-level-client can call the endpoints that
it should use.

Consider checking the timing of the request to only reveal data that can be
revealed if the endpoints needs to be public.

Status

© Coinspect 2024 10 / 19

Fixed on commit d6b70937d03a632f72899472b17d66d444fdb041.

An API Key is now required to authenticate calls to the methods exposed by the
FtsoDataProviderController.

© Coinspect 2024 11 / 19

FTSOS-002

Attacker can force the reveal of wrong data
due to random data in reveal

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

apps/ftso-data-provider/src/ftso-data-provider.controller.ts

Description

An attacker can manipulate a victim to reveal data that does not match their initial
commit due to the randomness of reveal data, which changes with each request,
and the way this data is stored.

When the top-level-client requests data for commitment, it calls the
submit1/:votingRoundId/:submitAddress endpoint. This data is then posted on-
chain. The FTSO Data Provider stores the actual data in the
votingRoundToRevealData map, mapped from votingRoundId to revealData.

The problem arises because revealData includes a random component:
revealData.random, which changes on different calls to the endpoint.

© Coinspect 2024 12 / 19

This allows an attacker to wait until the top-level-client has requested a commit
from the victim and then call submit1/:votingRoundId/:submitAddress with the
same voting round ID.

Since the votingRoundId remains the same, the map will overwrite the previous
revealData with the new revealData.random.

When the top-level-client later requests the reveal data, this newly overwritten
data is returned. This reveal data will not match the one originally committed by
the victim, exposing them to penalties and potentially causing loss of rewards.

Recommendation

Implement authentication for methods that should only be accessed by the top-
level-client.

Additionally, consider revising the storage mechanism for revealData to prevent
overwriting. One approach is to assign a unique random ID to each piece of reveal
data, shared only with the requester, who can then retrieve the reveal data using
this ID.

Status

Fixed on commit d6b70937d03a632f72899472b17d66d444fdb041.

The issue is no longer exploitable by an attacker due to authentication being
implemented at the controller's level.

© Coinspect 2024 13 / 19

FTSOS-003

Attacker can force revealing of wrong data by
following reference price provider

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

apps/ftso-data-provider/src/ftso-data-provider.controller.ts

Description

An attacker can force a victim to reveal data that does not match their commit
because the example provider implementation always returns the most up-to-
date prices instead of considering the roundId.

This issue is very similar to FTSOS-002. The difference is that instead of relying
on the random data contained in the reveal, the attacker relies on the fact that the
reference implementation for a provider is unsafe by default.

When the ftso-data-provider queries the example-provider for its price feed, it
will send an HTTP request to the endpoint preparePriceFeeds/:votingRoundId.
Unfortunately, by default, this endpoint completely ignores the votingRoundId
parameter.

© Coinspect 2024 14 / 19

 @Post("preparePriceFeeds/:votingRoundId")
 async getPriceFeeds(
 @Param("votingRoundId", ParseIntPipe) votingRoundId: number,
 @Body() body: PriceFeedsRequest
): Promise<PriceFeedsResponse> {
 const prices = await
this.priceProviderService.getPrices(body.feeds);
 return {
 votingRoundId,
 feedPriceData: prices,
 };
 }

This means that no matter the implementation of priceProviderService, it will
not have information on which votingRoundId to return prices for. Therefore, it will
almost certainly return the most up to date information. Which will cause a
mismatch between commit and reveal, as described in FTSOS-002.

The likelihood of this issue is lower because there is a chance that the provider
implements a correct version of the example.

Recommendation

See the recommendation for FTSOS-002.

Status

Fixed on commit d6b70937d03a632f72899472b17d66d444fdb041.

The issue is no longer exploitable by an attacker due to authentication being
implemented at the controller's level.

© Coinspect 2024 15 / 19

FTSOS-004

Possible to repeat hashes for different rounds

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

client/finalizer/finalizer_client.go

Description

The hash for a commit can be repeated in different voting rounds because the hash
does not include the voting round or any other kind of timestamps.

This means that a misbehaving voter that does not participate correctly in the
protocol and chooses a fixed random parameter to post would get the same hash
for the same prices each time. As prices are not entirely random nor volatile, the
chance of prices repeating somewhat often is non-negligible.

The issue is in the hashForCommit method:

 export function hashForCommit(voter: Address, random: string, prices:
string) {
 const types = ["address", "uint256", "bytes"];
 const values = [voter.toLowerCase(), random, prices];
 const encoded = encodeParameters(types, values);

© Coinspect 2024 16 / 19

 return soliditySha3(encoded)!;
 }

Note as well that his goes against the specification of the FTSO protocol, which
states that i, the round ID, is included in the commit hash.

Then the commit hash sha3(random_number, i, address, data) is
calculated from the random number, round id i,
data provider’s address and the feed value vector.

Recommendation

Include the round ID in the commit hash.

Status

Fixed on commit 96b969348154bd205d6e1a029af14601367b41e2.

The round ID was included in the commit hash.

© Coinspect 2024 17 / 19

FTSOS-005

Unused utilities

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

fsp-utils/src

Description

There are unused utilities for signing messages within the fsp-utils/src folder,
like the signMessageHash function.

This functions are not only unused, but strictly unsupported by the platform.

Recommendation

Move the functions used in tests to a corresponding folder.

Status

© Coinspect 2024 18 / 19

Acknowledged.

The Flare Team stated that some functions are used in the rewarding logic
calculation.

© Coinspect 2024 19 / 19

6. Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover any on-chain systems or frontends that
communicate with the network, nor the general operational security of the organization
that developed the code.

