
Flare
C-Chain Indexer
Security Review

© Coinspect 2024 1 / 17

C-Chain Indexer
Source Code Security Review

Version: v240409 Prepared for: Flare April 2024

Security Assessment

1. Executive Summary

2.2 Findings where caution is advised

2.3 Solved issues & recommendations

3. Scope

4 Assessment

4.4 Additional Fixes

5. Detailed Findings

FCCI-001 - Attackers can abuse fallback methods to hide
transactions

© Coinspect 2024 2 / 17

FCCI-002 - Malicious contracts can fake function
signatures

FCCI-003 - Secrets are printed to stdout

FCCI-004 - Secrets are stored in configuration files

6. Disclaimer

© Coinspect 2024 3 / 17

1. Executive Summary

In January 2024, Flare engaged Coinspect to perform a source code review of its C
Chain Indexer. The objective of the project was to evaluate the security of the
application.

The C Chain Indexer is in charge of interfacing with a C-Chain node and storing certain
transaction data in a database for later consumption by other Flare systems.

Solved Caution Advised Resolution Pending

High

0
High

0
High

0

Medium

1
Medium

2
Medium

0

Low

1
Low

0
Low

0

No Risk

0
No Risk

0
No Risk

0

Total

2
Total

2
Total

0

https://coinspect.com/

© Coinspect 2024 4 / 17

2. Summary of Findings

2.2 Findings where caution is advised

These issues have been addressed, but their risk has not been fully mitigated. Any
future changes to the codebase should be carefully evaluated to avoid exacerbating
these issues or increasing their probability.

Findings with a risk of None pose no threat, but document an implicit assumption which
must be taken into account. Once acknowledged, these are considered solved.

Id Title Risk

FCCI-001 Attackers can abuse fallback methods to hide transactions Medium

FCCI-002 Malicious contracts can fake function signatures Medium

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

FCCI-003 Secrets are printed to stdout Medium

FCCI-004 Secrets are stored in configuration files Low

© Coinspect 2024 5 / 17

3. Scope

The scope was set to be the repository at C-Chain Indexer at commit
7968e6bb0d7147c9823c8422fd32dda65bc0ab0b.

https://gitlab.com/flarenetwork/flare-system-c-chain-indexer/

© Coinspect 2024 6 / 17

4 Assessment

The C Chain Indexer works as an indexer for certain blockchain transactions specified
by its operator in a .toml configuration file. The indexer needs to have access to a C-
Chain node which is able to answer its queries.

The indexer has only a few features:

It must index past transactions if booted for the first time or if it is not in sync
It must keep indexing transactions in real time as long as it runs
It must periodically clean the DB from transactions that are too old to be relevant

It is important to consider that there is no direct way to interact with the indexer, as it
has no HTTP API. The indexer is started and it only interacts with a node that provides
it with answers and with its own DB. The main point of contact with untrusted entities
comes in the transactions that it parses and their data.

4.1 Security assumptions

There are two key security assumptions:

1. The node the indexer uses must be fully trusted.
2. The node the indexer uses must return only finalized blocks via its RPC, the

default for Avalanche nodes.

A soft assumption is that the transactions indexed must have as recipients a set of
certain Flare-controlled smart contracts. In particular, the indexer assumes that the
contracts implement a Solidity-style function dispatcher with 4-byte function
signatures.

This is a soft assumption because the indexer can be configured to index transaction to
arbitrary contracts. When consulting with Flare about this possibility, Flare answered
that while the intended usage is the one described, it would be beneficial to point out
issues arising from trying to use the indexer with arbitrary contracts. These issues
have been reported with a LOW likelihood.

4.3 Testing

https://support.avax.network/en/articles/7329750-are-there-reorgs-on-avalanche

© Coinspect 2024 7 / 17

There is only one test in the system. The test only checks basic equalities related to
the indexer's pointers to the oldest and newest block it has received and that no errors
have been thrown during execution.

Coinspect recommends that more tests relating to transaction data being stored by the
indexer are added.

4.4 Additional Fixes

In April 8, 2024 Coinspect reviewed additional changes and features as of commit
8c92f3c23a5a3c39f3fba3e184650b41983cfdd8.

Most relevant changes are related to bug fixes when retrieving latest blocks,
modifications in data types and structs, improvements in the logging and backoff/retry
systems and validation of contract addresses and function signatures integrity.

Coinspect did not find any issues as of this commit.

© Coinspect 2024 8 / 17

5. Detailed Findings

FCCI-001

Attackers can abuse fallback methods to hide
transactions

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
High
Likelihood
Low

Location

indexer/blocks.go

Description

Any call that executes logic via fallback or receive is not indexed, as a result,
relevant transactions will not be included in the database.

The indexer skips transactions with a data size smaller than 4 bytes:

© Coinspect 2024 9 / 17

 txData := hex.EncodeToString(tx.Data())
 if len(txData) < 8 {
 continue
 }

In other words, the indexer skips calls executing logic with less than 4 bytes of
data that trigger a fallback or receive instruction.

A case in the Flare Protocol would be its WNat contract. Deposit transactions
process incoming native transfers automatically by minting wrapped tokens:

 receive() external payable {
 deposit();
 }

Additionally, any relevant action performed via the constructor of a contract would
never be indexed as transactions sent to the address(0) are ignored:

 if tx.To() == nil {
 continue
 }

If a transaction triggered from the constructor of a contract becomes relevant in
the future, this indexer's implementation will omit it and will not be available for
consumers.

Recommendation

Consider removing the minimum size of the data in transactions that can be
indexed and adding a special string like "empty" to the config.toml file. This string
would indicate that the empty transaction data is relevant for this contract and
would get indexed.

Status

Acknowledged.

The Flare Team acknowledged the risk and stated that considers this as not
needed in the context of the Flare Systems Protocol.

© Coinspect 2024 10 / 17

FCCI-002

Malicious contracts can fake function
signatures

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
High
Likelihood
Low

Location

indexer/blocks.go

Description

If transactions a malicious contract is configured to be indexed, the indexer can be
tricked into believing certain method calls have happened when they have not.

The root cause of the issue is that the indexer assumes that contracts will follow
the conventional Solidity-dispatcher interface. This interface mandates that the
first four bytes of the calldata match a function selector.

txData := hex.EncodeToString(tx.Data())
if len(txData) < 8 {

continue
}

funcSig := txData[:8]

© Coinspect 2024 11 / 17

contractAddress := strings.ToLower(tx.To().Hex()[2:])
check := false
policy := transactionsPolicy{status: false,

collectEvents: false}

for _, address := range []string{contractAddress,
undefined} {

if val, ok := ci.transactions[address]; ok {
for _, sig := range []string{funcSig,

undefined} {
if pol, ok := val[sig]; ok {

check = true
policy.status =

policy.status || pol.status
policy.collectEvents =

policy.collectEvents || pol.collectEvents
}

}
}

}

Nevertheless, this interface is not a requirement for the EVM, it is merely a
common implementation detail of compilers.

If a malicious address is set as a valid contractAddress, then this contract can
appear to the indexer to have called a function with a certain signature. In reality,
the contract could take any arbitrary action, including simply being a NOOP.

The inverse is also true: a malicious contract is able to execute functions with a
txData size of less than 4 bytes. An attacker can thus hide their functions calls.

Recommendation

Do not use the indexer with arbitrary contracts.

If the indexer needs to support a new contract, make sure that:

1. The contract is not upgradable or is upgradable only by a trusted party
2. The contract is in Solidity or languages that follow the 4-byte function

selector convention.

Consider adding a warning to the .toml config file that warns operators of the
dangers of adding arbitrary contracts to the indexer.

Status

Acknowledged.

© Coinspect 2024 12 / 17

The Flare Team stated that the indexer will be used only for known contracts.

© Coinspect 2024 13 / 17

FCCI-003

Secrets are printed to stdout

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

main.go

Description

Secrets are leaked to stdout and potentially to log-collecting services. This makes
it possible for attackers that compromise any log collecting service to capture the
database credentials and the API Keys for the node. Consider how this compounds
with the risk described in FCCI-04.

The CChain struct's String method prints both the database credentials and the
node's API key:

func (cc ChainConfig) String() string {
return fmt.Sprintf("NodeURL: %s, APIKey: %s", cc.NodeURL,

cc.APIKey)
}

This is then called when initializing the program:

© Coinspect 2024 14 / 17

logger.Info("Running with configuration: chain: %s, database:
%s", cfg.Chain, cfg.DB.Database)

Recommendation

Do not print sensitive information.

Status

Fixed on commit 4698f7f76ef963c677dce0ec9e8d2654693e80cb.

The log exposing sensitive keys was removed.

© Coinspect 2024 15 / 17

FCCI-004

Secrets are stored in configuration files

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

config.toml

Description

Attackers positioned inside the host can fetch database credentials and API keys
from the configuration files while the operators have no way to audit access to
these secrets and rotate them in case of compromise.

The program expects database credentials to be in the config.toml file:

func connect(ctx context.Context, cfg *config.DBConfig) (*gorm.DB,
error) {

// Connect to the database
dbConfig := mysql.Config{

User: cfg.Username,
Passwd: cfg.Password,
Net: tcp,
Addr: fmt.Sprintf("%s:%d", cfg.Host,

cfg.Port),
DBName: cfg.Database,

© Coinspect 2024 16 / 17

AllowNativePasswords: true,
ParseTime: true,

}

This architecture makes it harder for operators to use a secret manager such as
AWS Secrets Manager or Hashicorp.

It is also worth noting that the configuration file is committed to the repository,
making it more likely for leaks to occur.

Recommendation

Make the program able to read database credentials from the environment.
Secrets managers usually have features to inject secrets into environment
variables, making it easier for operators to use them.

Status

Fixed on commit 0c159a90003d3b682a9f533b3eee9c0f598737fa.

Secrets can now be retrieved from environment variables.

https://aws.amazon.com/secrets-manager/
https://www.hashicorp.com/

© Coinspect 2024 17 / 17

6. Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover any on-chain systems or frontends that
communicate with the network, nor the general operational security of the organization
that developed the code.

