StakingP2

Smart Contract
Security Review

cQinspect

cOinspect

Staking P2

Smart Contract Review

Version: v240220 Prepared for: Flare November 2023

Smart Contract Security Review

Executive Summary
Summary of Findings

Solved issues & recommendations
Assessment and Scope

Design Principle

Trust Assumptions

Known Limitations

Offchain consuming services

Fixes Review

Detailed Findings

© Coinspect 2024 1/27

Disclaimer

File hashes

© Coinspect 2024 2/27

Executive Summary

for implementing the Flare Staking Phase 2 feature. The objective of the project was
to evaluate the security of a staking system that allows users to mirror operations
made on Flare's P-Chain to C-Chain. This mirroring process grants P-Chain stakers a
balance increase on the C-Chain, which is then taken into account for Flare's rewards
distribution process. Flare Staking Phase 2 implements the mirroring functionality by
integrating a voting system where trusted entities vote to commit the merkle root for
the transactions made on the P-Chain.

The following issues were identified during the initial assessment:

v A X

Solved Caution Advised Resolution Pending
High High High
0 0 0
Medium Medium Medium
0 0 0
Low Low Low
3 0 0
No Risk No Risk No Risk
3 0 0
Total Total Total

6 0 0

Coinspect identified three low-risk issues and three informational issues.

The first low-risk issue, PTSK-001, depicts how malicious voters can steal future
rewards by committing fake roots, circumventing the currently implemented

© Coinspect 2024 3/27

https://flare.network/
https://www.coinspect.com/

countermeasures. Also, attackers can create perpetual staking positions that will never
be decreased by the Flare Daemon (PTSK-002). Lastly, PSTK-063, shows how the system
does not filter zero-amount stakes, that could potentially overpopulate the staking
cleanup queue. This would cause lag for each daemonize call, resulting in rewards being
distributed for stakes that should have been considered finished.

© Coinspect 2024 4/27

Summary of Findings

Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk
PSTK-001 Insufficient protection against fake stakes
PSTK-002 Infinite mirrored stakes lead to eternal rewards

PSTK-003 Zero-value mirrored stakes increase the lag on daemonize

Additional vote required after decreasing the voting

PSTK-004 threshold None
PTSK-005 Votes of replaced voters count for current root None
PTSK-006 Never-finalizing voting epoch due to high thresholds None

© Coinspect 2024 5/27

Assessment and Scope

The source code review of the Flare Staking Phase 2 project started on September 4,
2023, and was conducted on the staking branch of the git repository located at

https:./gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/66h as of
commit c9796a64227d6ae103feBB8ePeddc5f908chab18.

Overall, the code was easy to read. However, Coinspect suggests to include more
documentation and specifications regarding its use cases. In addition, the testing suite
quality is high.

Design Principle

The Flare Staking Phase 2 code is based on a proof system where trusted entities,
called voters, propose and vote for each epoch's merkle root containing the
transactions that occur on the P-Chain (the Platform Chain). The transactions
supported are staking, delegating, and instantiating a validator. Each type of transaction
allows users to mirror their position to the C-Chain (so called Contract Chain). Then,
the mirrored transactions are considered by the combined token implementation,
CombinedNat, to calculate the balance used for rewards distribution. The balance
granted by the mirrored transactions is decreased by the Flare Daemon, according to
their end time (expiration).

Trust Assumptions

A strong assumption during the development of this feature is that voters are trusted
entities. While Coinspect considered the voters as trusted, auditors also analyzed the
review of the system's components assuming that the inputs (e.g., proofs or actions
performed by off-chain components) could potentially be corrupt or malicious.

The assessment's focus was to reduce the risk based on the defense-in-depth
principle, performing checks on each critical layer to minimize the reliance on the trust
assumptions. Even when some components are trusted, the system might face critical
consequences in the event of, for example, a supply chain attack targeting voter's

© Coinspect 2024 6/27

https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/665

private keys. Attackers could try to compromise trusted voters in order to vote for fake
roots (proving stakes or delegations that never happened on the P-Chain).

This takeover could be used to increase the attacker's CombinedNat balance on the C-
Chain and receive perpetual rewards or force a chain fork. For example: attackers could
prevent any other mirroring by granting themselves all the remaining total supply
(triggering an overflow on future mirroring operations) or generate multiple perpetual
staking positions. Because of the reasons just mentioned, Coinspect focused on
suggesting improvements for the protocol to reduce the likelihood of disrupting the
system if the trusted voters are compromised.

Known Limitations

The balance decrease made by the Daemon can revert as it loops over each position
and timestamp. Flare implemented several ways to prevent that from happening such
as limiting the amount of mapping-updates under two different operating conditions:
normal and fallback. When the system enters a fallback state, the maximum amount
of updates is reduced by a 20%. This design might cause a delay or lag scenario,
because it could happen that a single daemonize call is not enough to fully decrease all
the staking positions to-be-closed by that timestamp. If that happens, users will be
able to unfairly receive rewards for more blocks until the Daemon catches up. This is a
limitation known by the Flare team that was discussed during the engagement's kick-
off meeting.

Offchain consuming services

During this engagement, Coinspect did not review how the validator uptime data is
consumed once the respective event
(PChainStakeMirrorValidatorUptimeVoteSubmitted) is emitted. As the design of the
uptime voting system found in the smart contracts is lightweight, it only emits the
event provided by its caller, services consuming its data should handle adversarial
scenarios such as double voting, voting for fake nodeIds, among others.

© Coinspect 2024 7127

Fixes Review

commit adechcohbhehe95d156023893d99dc3e29.18h2¢cd of the merge.request.|e6h.

Flare addressed all the issues of this report and added a new function to the
AddressBinder contract.

AddressBinder changes

A new function, registerPublicKey, was added where users can link an address of the
P-Chain and C-Chain by only providing the public key, instead of each chain's address
and the public key. Coinspect identified that this function is less secure then previously
implemented one (registerAddresses) as there are no checks to ensure that the
derived addresses are the expected ones. In the event of having an issue with the
derivation, users might register an unexpected address.

The motivation of this addition, according to the Flare Team is:

We added additional method registerPublicKey to AddressBinder contract in
order to simplify the users flow, so that they do not need to do all the
convertions by themselves, but can only provide a public key and later
check the addresses.

© Coinspect 2024 8/27

https://www.coinspect.com/
https://flare.network/
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/665/diffs?commit_id=adecbc6b6bebe95d156b23893d99dc3ea918b2cd
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/665

Detailed Findings

PSTK-001

|
Insufficient protection against fake stakes

Status Risk
Solved Low
v
Impact
Medium
Resolution Likelihood
. Low
Fixed
Location

PChainStakeMirrorMultiSigVoting.sol

Description

Attackers can mirror stakes coming from fake voted proofs before the governance
calls resetVoting and steal future rewards.

The voting contract has an emergency function that allows the governance to reset
a previously voted merkle root. However, once the voting finalizes there will be
some time after resetVoting is effectively called. This enables attackers to collude

© Coinspect 2024 9/27

to vote a merkle root that includes fake perpetual stakes or delegations and then
call mirrorStaking before the governance resets the malicious root.

function resetVoting(uint256 _epochId) external onlyGovernance {
require(pChainMerkleRoots[_epochId] != bytes32(8), "epoch not
finalized");
pChainMerkleRoots[_epochId] = bytes32(0);
emit PChainStakeMirrorVotingReset(_epochId);

Once a root has been committed (voting threshold was reached), the verification
system will be able to retrieve its value for the specified epoch and will
successfully verify the fake staking:

function verifyStake(
PChainStake calldata _stakeData,
bytes32[] calldata _merkleProof

external view override
returns (bool)

return _verifyMerkleProof(
_merkleProof,

_merkleRootForEpochId(pChainStakeMirrorVoting.getEpochId(_stakeData.sta

rtTime)),
_hashPChainStaking(_stakeData)
Ik
}
Recommendation

Include a delay considering the root finalization timestamp at which staking
positions can start to be mirrored. This will give the governance a buffer time in
case a root needs to be reset before users can mirror their stakes on the C-Chain.

Status

Fixed on commit adecbc6b6bebe95d156b23893d99dc3ea918b2cd.

A revokeStake function was added, according to Flare's Team:

The idea was to mirror funds as soon as possible in order to support
fair rewarding and up-to-date voting in Phase 3, so introducing
additional delay is not a desired direction. Instead of this we decided
to add a revokeStake method that can immediately remove fake stakes and

© Coinspect 2024

10/27

can be only called by governance. In that case the user will only have
a fake balance/vote power for a short period of time (historical
checkpoints should not be changed as they might already be used
somewhere)

While the issue is fixed, Coinspect noted that two threats related to this
implementation need to be taken into account moving forward:

1. Mirroring a malicious position that disrupts the current checkpoint will
potentially affect services reading and consuming from the checkpointed-
getters (balanceOfAt, stakesOfAt, among others). However, mirroring an
overly high position that triggers an overflow on the respective checkpoint is
no longer possible thanks to the fixes introduced for PSTK-8062 and PSTK-003.

2. The revokeStake function poses a centralization risk where the governance
can revoke the staking of any user, even if the root of that epoch was not
reset. If this function is meant to be used only for malicious mirrored stakes
that occur due to reset roots, Coinspect suggests checking that the epoch's
root is bytes32(0) for the transaction being revoked.

© Coinspect 2024 11/27

PSTK-002

]
Infinite mirrored stakes lead to eternal

rewards
Status Risk
Solved Low
v
Impact
Medium
Resolution Likelihood
. Low
Fixed
Description

A proof with infinite endTime will never be cleaned by the Flare Daemon, granting
the attacker eternal rewards.

When mirroring a staking, the PChainStakeMirror trusts blindly that the provided
parameters are not malicious:

function mirrorStake(
IPChainStakeMirrorVerifier.PChainStake calldata _stakeData,
bytes32[] calldata _merkleProof

)
{

external override whenActive

require(verifier.verifyStake(_stakeData, _merkleProof), "stake
not proved");
// unique hash is combination of transaction hash and source

address as
// staking can be done from multiple P-chain addresses in one

© Coinspect 2024

12/27

transaction
bytes32 txHash = keccak256(abi.encode(_stakeData.txId,
_stakeData.inputAddress));
require(transactionHashToPChainStakingData[txHash].owner ==
address(0), "transaction already mirrored");
require(_stakeData.startTime <= block.timestamp, "staking not
started yet");
require(_stakeData.endTime > block.timestamp, "staking already
ended");

address cChainAddress =
addressBinder.pAddressToCAddress(_stakeData.inputAddress);

require(cChainAddress != address(9), "unknown staking
address");

PChainStakingData memory pChainStakingData =
PChainStakingData(cChainAddress, _stakeData.nodeld,
_stakeData.weight);
transactionHashToPChainStakingData[txHash] = pChainStakingData;
endTimeToTransactionHashList[_stakeData.endTime].push(txHash);
_increaseStakeAmount(pChainStakingData, txHash,
_stakeData.txId);

}

A malicious voter or colluded ones can propose a fake root where the stake data
has infinite _stakeData.endTime, and daemonize() will never call
_decreaseStakeAmount for that position.

Recommendation

Enforce a maximum end time for stakes.

Status

Fixed on commit adecbc6b6bebe95d156b23893d99dc3ea918b2cd.

The Flare Team added a set of immutable variables to PChainStakeMirrorVerifier
to restrict the staking's duration and amounts upon verification, also fixing PTSK-
003:

uint256 public immutable minStakeDurationSeconds;
uint256 public immutable maxStakeDurationSeconds;
uint256 public immutable minStakeAmountGwei;
uint256 public immutable maxStakeAmountGwei;

Coinspect considers that their immutability restricts the mirroring protocol and
could cause a malfunctioning if some parameter is modified on the P-Chain.

© Coinspect 2024 13/27

Consider making them mutable, behind an onlyGovernance setter.

The Flare Team responded:

We considered this option to add the methods to change the parameters
by governance, but we came to the conclusion that it is more gas
efficient to have them as immutable values and in case we need to
change them just redeploy the contract and do one governance
transaction through address updater to actually switch the verifier
contract on PChainStakeMirror Contract

© Coinspect 2024 14/27

PSTK-003

|
Zero-value mirrored stakes increase the lag

on daemonize

Status Risk
Solved Low
A 4
Impact
Low
Resolution Likelihood
. Low
Fixed
Location

PChainStakeMirror.sol

Description

When mirroring, the protocol allows processing zero-amount stakes. As a
consequence, a proof containing many zero-value stakes could be used to attack
the system as the daemonize() will also have to decrease the stake amounts for
zero-staking positions. Hence, increasing the usage of the noOfUpdates and
limiting the system to update relevant positions.

The mirroring contract has no mechanism to prevent this side effect of a malicious
proof, processing a zero-amount staking:

function mirrorStake(
IPChainStakeMirrorVerifier.PChainStake calldata _stakeData,
bytes32[] calldata _merkleProof

© Coinspect 2024 15/27

)
{

external override whenActive

require(verifier.verifyStake(_stakeData, _merkleProof), "stake
not proved");

// unique hash is combination of transaction hash and source
address as

// staking can be done from multiple P-chain addresses in one
transaction

bytes32 txHash = keccak256(abi.encode(_stakeData.txId,
_stakeData.inputAddress));

require(transactionHashToPChainStakingData[txHash].owner ==
address(0), "transaction already mirrored");

require(_stakeData.startTime <= block.timestamp, "staking not
started yet");

require(_stakeData.endTime > block.timestamp, "staking already
ended");

address cChainAddress =
addressBinder.pAddressToCAddress(_stakeData.inputAddress);

require(cChainAddress != address(9), "unknown staking
address");

PChainStakingData memory pChainStakingData =
PChainStakingData(cChainAddress, _stakeData.nodeld,
_stakeData.weight);
transactionHashToPChainStakingData[txHash] = pChainStakingData;
endTimeToTransactionHashlList[_stakeData.endTime].push(txHash);
_increaseStakeAmount(pChainStakingData, txHash,
_stakeData.txId);

}

As a consequence, the
endTimeToTransactionHashList[_stakeData.endTime].push(txHash) queue s
populated with a valueless position that will be later on cleaned up on
daemonize(). An overpopulation of zero-value positions can generate an
outstanding lag when decreasing staking positions or even force a revert:

for (uint256 i =
endTimeToTransactionHashList[nextTimestampToTriggerTmp].length; i > 0;
i--) |
noOfUpdates++;
if (noOfUpdates > maxUpdatesPerBlockTemp) {
break;
} else {
bytes32 txHash =
endTimeToTransactionHashlList[nextTimestampToTriggerTmp][i - 1];

endTimeToTransactionHashList[nextTimestampToTriggerTmp].pop();
_decreaseStakeAmount(transactionHashToPChainStakingDatal[txHash],

txHash) ;
delete transactionHashToPChainStakingData[txHash];

© Coinspect 2024

16/27

Currently, GovernanceVotePower .updateAtTokenTransfer() allows zero-amount
updates as the following line is commented:

// require(_amount > @, "Cannot transfer zero amount");

However, if this line is uncommented a revert in daemonize() will be triggered.
This would allow users to keep their mirrored staking positions forever on the C-
Chain.

Proof of Concept

The following test shows that the system allows mirroring zero-value staking
positions, checking that daemonize() does not revert and emits the StakeEnded
event for both positions.

To run the script, place it on
test/unit/staking/implementation/PChainStakeMirror.ts.

it("Coinspect - Test Zero Stake Amount", async () => {
let datal = await setMockStakingData(
verifierMock,
pChainVerifier,
stakel1Id,
9,
registeredPAddresses[0],
nodeId1l,
now.subn(10),
now.addn(10),

0
)
let data2 = await setMockStakingData(
verifierMock,
pChainVerifier,
stake1Id,
9,
registeredPAddresses[1],
nodeId1l,

now.subn(10),

now.addn(10),

0
)
await pChainStakeMirror.mirrorStake(dataT,
await pChainStakeMirror.mirrorStake(data2,

——
[—
~— —

await increaseTimeTo(now, 20);

const signer = await ethers.getSigner(accounts[0]);

const pChainStakeMirrorEth =
PChainStakeMirror__factory.connect(pChainStakeMirror.address, signer);

const tx = await pChainStakeMirrorEth.daemonize({ from: accounts[8] });
let receipt = await tx.wait();

© Coinspect 2024 17/27

const txHash® = ethers.utils.keccak256(
ethers.utils.defaultAbiCoder.encode(["bytes32",
[stake1Id, registeredPAddresses[0]])
IE

expectEthersEvent(receipt, pChainStakeMirrorEth,

owner: registeredCAddresses[0],
nodeId: nodeld1l,

amountWei: 6 * GWEI,

txHash: txHasho,

)i

const txHash1l = ethers.utils.keccak256(
ethers.utils.defaultAbiCoder.encode(["bytes32",
[stake1Id, registeredPAddresses[1]])
IE

expectEthersEvent(receipt, pChainStakeMirrorEth,

{

owner: registeredCAddresses[1],
nodeId: nodeld1l,

amountWei: 6 * GWEI,

txHash: txHasht,

1)
1)
Recommendation

Allow the governance to setup a minimum staking amount (matching the
minimum size imposed on the P-Chain) and enforce it when mirroring a position.

Status

Fixed on commit adechc6b6bebe95d156b23893d99dc3ea918b2cd.

See PTSK-002 for more details.

© Coinspect 2024

"bytes20"],

"StakeEnded",

"bytes20"],

"StakeEnded",

18/27

PSTK-004

|
Additional vote required after decreasing the

voting threshold

Status Risk
Solved None
v
Impact
Recommendation
Resolution Likelihood
Fixed -
Location

PChainStakeMirrorMultiSigVoting.sol

Description

When the governance adjusts the voting threshold downwards for an on-going
voting, if the new threshold is below the current amount of votes for a specific
root, an additional vote will still be required to commit the root.

function setVotingThreshold(uint256 _votingThreshold) external
onlyGovernance {
require(_votingThreshold > 1, "voting threshold too low");
votingThreshold = _votingThreshold;
emit PChainStakeMirrorVotingThresholdSet(_votingThreshold);

© Coinspect 2024

19/27

This happens because the finalization condition checks that the amount of votes
plus one, exceeds the threshold:

if (merkleRootVotes.votes.length + 1 >= votingThreshold) {
// publish Merkle root
pChainMerkleRoots[_epochId] = _merkleRoot;
delete epochVotes[_epochId];
emit PChainStakeMirrorVotingFinalized(_epochId, _merkleRoot);

For example:

Initial State

Threshold = 10

Votes[RootA] = 9
Votes[RootB] = 4
Final State
Threshold = 5
Votes[RootA] = 9
Votes[RootB] = 4

The final state will require another call to submitVote by a voter that has not voted
yet either to commit the RootA or RootB, even if the RootA has more votes than the
threshold.

Recommendation

Document this side effect when reducing the threshold while voting is taking
place.

Status

Fixed on commit adecbhc6b6bebe95d156b23893d99dc3ea918b2cd.

Flare added the following comment on setVotingThreshold():

© Coinspect 2024 20/27

* **NQTE**: Decreasing threshold will not finalize an ongoing
voting.

* Additional vote will be required, even if, according to the new
threshold, voting should already be finalized.

© Coinspect 2024 21/27

PTSK-005

|
Votes of replaced voters count for current

root
Status Risk
Solved None
v
Impact
Recommendation
Resolution Likelihood
Fixed -
Location

PChainStakeMirrorMultiSigVoting.sol

Description

The only way to add or remove voters from the voting contract is by replacing all
the voters list. Votes coming from entities that are then replaced will still
contribute to the accounting for the current root:

function changeVoters(address[] calldata _newVotersList) external
onlyGovernance {

voters.replaceAll(_newVotersList);

emit PChainStakeMirrorVotersSet(_newVoterslList);

When accounting for votes, they are only cleared once the voting ends (the
threshold is exceeded):

© Coinspect 2024

22/27

if (merkleRootVotes.votes.length + 1 >= votingThreshold) {
// publish Merkle root
pChainMerkleRoots[_epochId] = _merkleRoot;
delete epochVotes[_epochId];
emit PChainStakeMirrorVotingFinalized(_epochId, _merkleRoot);

This means that votes coming from replaced voters will still count.

Recommendation

Document this scenario in the changeVoters function.

Status

Fixed on commit adecbc6b6bebe95d156b23893d99dc3ea918b2cd.

Flare added the following comment on changeVoters():

* **NOTE**: Already casted votes in an ongoing voting will not be
deleted and will count towards the threshold.

* **NOTE**: Setting fewer voters than the threshold will disable
finalization of voting.

© Coinspect 2024 23/27

PTSK-006

|
Never-finalizing voting epoch due to high
thresholds

Status Risk
Solved None
v
Impact
Recommendation
Resolution Likelihood
Fixed -
Location

PChainStakeMirrorMultiSigVoting.sol

Description

The governance can set an overly high threshold value and prevent any voting
from concluding.

When setting the threshold, any value can be set, regardless the current amount
of allowed voters:

function setVotingThreshold(uint256 _votingThreshold) external
onlyGovernance {
require(_votingThreshold > 1, "voting threshold too low");
votingThreshold = _votingThreshold;
emit PChainStakeMirrorVotingThresholdSet(_votingThreshold);

© Coinspect 2024

24127

This means, that setting threshold values over the total amount of voters will
prevent a root commitment as there is no way it can be reached:

if (merkleRootVotes.votes.length + 1 >= votingThreshold) {
// publish Merkle root
pChainMerkleRoots[_epochId] = _merkleRoot;
delete epochVotes[_epochId];
emit PChainStakeMirrorVotingFinalized(_epochId, _merkleRoot);

It also applies for extreme threshold values such as the ones shown below,
disrupting considerably the voting process:

total amount of voters - 1
2

threshold_1
threshold_2

Recommendation

Document this possibility so that the governance is aware of the total amount of
voters before setting the threshold or reset the voters list.

Status

Fixed on commit adecbc6b6bebe95d156b23893d99dc3ea918b2cd.

Flare added the following comment on setVotingThreshold():

* **NOTE**: Setting higher threshold than the total number of
voters will disable finalization of voting.

© Coinspect 2024 25/27

Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover any off-chain systems or frontends that
communicate with the contracts, nor the general operational security of the
organization that developed the code.

File hashes

Directory . /contracts/governance:

a3163d4d5316c5531bb73809863b69f27dbbf115310€a79165f09df7aab69cf2a
./implementation/GovernorVotePower.sol
Obe4020adc4407c68d1555687544e7543b69b6b5ad56143fe87c4fb40388336¢C
./governance/implementation/PollingFtso.sol

Directory . /contracts/staking:

512aa61c2d349695d131f0127e45c9fec008aa77034d8d2ed41c1034978f8485
./interface/IIPChainStakeMirrorVerifier.sol
43990706ed5385bc6158f4f3f02a891e4f207e080142eabBa5d46502132294ab
./implementation/PChainStakeMirrorMultiSigVoting.sol
718ad1adab1bf81262e8751f77caf37d847¢c9679d97927dab61008c5019a8b51
./implementation/AddressBinder.sol
8ed7912202855142eh986ae926a08a5a834b21593f5c36af177b4c71f504deB9
./implementation/PChainStakeMirrorVerifier.sol
180987e41¢c1¢c79a9b4685f746d642787441f12119f095410b9b49e1d7aefB19a6
./implementation/PChainStakeMirror.sol
6fa6158a97053663741e2437c644f92ac1e973c68e41dd68e477f5daa33652fd
./implementation/PChainStake.sol
c7607ac8a7193aa432dae9154ab339f7f6cfed4761d6532fa9b459f9¢ca776b56
./1lib/PChainStakeHistory.sol

Directory . /contracts/token:

e8b7e40cd3a20b8f663793453d63¢c913f3598625b2b5¢c5dcd9b3dc52565¢cf12a
./implementation/CombinedNat.sol
ffc78a8e44ec6f94ed3a8ee5bd5189fbf10451aca8be9e205a17ceadb516b5d9
./implementation/GovernanceVotePower.sol
e3bbb05ef6389673dc0489d57088f5c42fdde929¢c5dd3f11354377109bc2650e
./interface/IICombinedNatBalance.sol

© Coinspect 2024 26/27

05fcda973d976a87e81a2189f5974ba2089833dab6e653e52bf58f0d495165ca
./interface/IIGovernanceVotePower.sol

Directory . /contracts/tokenPools:

4547ec3db8a1f92323570888c2da3f6f869d62ff8d0d7ebf09e09e5c50551f1a
./implementation/DistributionToDelegators.sol

Directory . /contracts/userinterfaces:

8f560d1730382027e8bfeb5b3d15763f4c5ecB50eal2b20faddofObod1cad1d5
./IAddressBinder.sol
e496de47d2de3d73¢cec89059d75e3037203806073df838609bd46bae24c9173
./IPChainStakeMirrorVerifier.sol
6d8f93bc54¢c37¢f51778289dcbd95¢chb490af1fb3b0090babf5e9cdb39ced8166
./IPChainStakeMirror.sol
8cdae6125d7045706f6b5c185f6df8cf96ec7a46e091c29f8615560d94b7d211b
./IPChainVotePower.sol
a7f4a69f11031ecf9e94bd10bf259ce5¢c1b8483af784bh22156a7fa6618e102b6
./IPChainStakeMirrorMultiSigVoting.sol

Directory . /contracts/utils:

be4aa19441689b0Obb9obfbabdd2ec3c6748daf27aaaad1cfd250629920a0209be3
./implementation/BytesLib.sol

© Coinspect 2024 27127

