
Flare

Smart Contracts V2
Security Review

© Coinspect 2024 1 / 70

Smart Contracts v2
Smart Contract Security Review

Version: v240515 Prepared for: Flare May 2024

Security Assessment

1. Executive Summary

2.3 Solved issues & recommendations

3. Scope

4 Assessment

4.1 Security assumptions

4.2 Decentralization

4.3 Code Quality & Testing

5. Detailed Findings

FSC-01 - Voters can use any signing policy to vote for a
new one

© Coinspect 2024 2 / 70

FSC-02 - Signing policies of certain length break the
contract

FSC-03 - Relayers can set an invalid signing policy

FSC-04 - Callers can mistakenly use unsafe random
values

FSC-05 - Arbitrary values for firstVotingRoundStartTs
disrupt the functioning of FTSOs and Stake Mirrorings

FSC-06 - RewardEpochId size mismatch between
contract and top-level-client

FSC-07 - Attacker could use submitAndPassContract to
waste resources

FSC-08 - Permanent data staleness threatens financial
stability of third parties

FSC-09 - Inflation receiver childs might not implement
key functions

FSC-10 - Voters can have zero voting power after
normalization

FSC-11 - Voter cap mismatch endangers system's voting
integrity

FSC-12 - Governance calls can be return bombed

FSC-13 - Attacker can gain unfair voting power by timing
first daemonization

FSC-14 - Evil voters can steal voting power through node
registration

FSC-15 - Daemonize calls revert with high reward expiry
offsets

© Coinspect 2024 3 / 70

FSC-16 - Tests heavily relying on mock calls could fail to
reproduce adversarial scenarios

FSC-17 - Broken invariant could disrupt how third
parties consume the amount of registered voters

FSC-18 - Chilling bypassed by re-delegating voting
power

6. Disclaimer

© Coinspect 2024 4 / 70

1. Executive Summary

In January 2024, Flare engaged Coinspect to perform a source code review of its
Smart Contracts v2 repositories. The objective of the project was to evaluate the
security of the smart contracts, which are one of the most important components of the
Flare ecosystem.

The Smart Contracts v2 contracts are responsible for several tasks: coordination of
voters of the Flare System protocol and validation of their signatures, an
implementation of a Governance which authorizes certain actions in other smart
contracts, inflation and rewards management in the network among other core
features of Flare.

Solved Caution Advised Resolution Pending

High

2
High

0
High

0

Medium

3
Medium

0
Medium

0

Low

3
Low

0
Low

0

No Risk

10
No Risk

0
No Risk

0

Total

18
Total

0
Total

0

In this security assessment, Coinspect identified 2 high-risk, 3 medium-risk and 3 low-
risk issues. Also, 10 no-risk issues are included. These no-risk issues are
recommendations aiming to enhance the project's long-term security and integrity. The

https://coinspect.com/

© Coinspect 2024 5 / 70

reported issues with more impact mainly relate to several cases where evil voters
could get unfair advantage over others. For example, by manipulating their vote power,
bypassing penalties and using older signing policies (voting rules).

© Coinspect 2024 6 / 70

2. Summary of Findings

2.3 Solved issues & recommendations

This section outlines issues that have been fully resolved and offers recommendations
aimed at enhancing the project's long-term security.

Id Title Risk

FSC-01 Voters can use any signing policy to vote for a new one High

FSC-14 Evil voters can steal voting power through node registration High

FSC-02 Signing policies of certain length break the contract Medium

FSC-03 Relayers can set an invalid signing policy Medium

FSC-13
Attacker can gain unfair voting power by timing first

daemonization Medium

FSC-04 Callers can mistakenly use unsafe random values Low

FSC-08
Permanent data staleness threatens financial stability of

third parties Low

FSC-11 Voter cap mismatch endangers system's voting integrity Low

FSC-05
Arbitrary values for firstVotingRoundStartTs disrupt the

functioning of FTSOs and Stake Mirrorings None

FSC-06
RewardEpochId size mismatch between contract and top-

level-client None

FSC-07
Attacker could use submitAndPassContract to waste

resources None

FSC-09 Inflation receiver childs might not implement key functions None

© Coinspect 2024 7 / 70

FSC-10 Voters can have zero voting power after normalization None

FSC-12 Governance calls can be return bombed None

FSC-15 Daemonize calls revert with high reward expiry offsets None

FSC-16
Tests heavily relying on mock calls could fail to reproduce

adversarial scenarios None

FSC-17
Broken invariant could disrupt how third parties consume

the amount of registered voters None

FSC-18 Chilling bypassed by re-delegating voting power None

© Coinspect 2024 8 / 70

3. Scope

The initial scope was focused on the Flare Smart Contracts V2 repository at commit
e84833be205602322def5eb08a658d8bba42c6bc.

On April 9, at Flare's request, we expanded the scope to include additional contracts:
PollingFTSO, PollingFoundation, PChainStakeMirrorVerifier, and
ValidatorRewardsOffersManager. These were reviewed at commit
57013ccb27d9d93fc901f864993c7589eef19230. It is important to note that this commit
was not fully reviewed; our evaluation was limited to the contracts specified above,
none of which presented issues.

https://gitlab.com/flarenetwork/flare-smart-contracts-v2

© Coinspect 2024 9 / 70

4 Assessment

This review evaluates the security of Flare V2 Smart Contracts, the core infrastructure
of Flare on which other protocols rely.

This infrastructure allows to:

Calculate, set and query a list of top voters
Generate a random number, e.g., consumed when picking a vote power block
Vote for new signing policies, validator up-time and reward distributions
Claim rewards
Relay voting results that derive from off-chain calculations. This feature also
enables mirroring the voting results to other chains
Mirror the stakes made on the P-Chain, to get the underlying voting power derived
from those stakes
Publish and query data for price-feeds

It implements a voting mechanism used by users that accrue the top voting power from
the community. The voting weight of each user is calculated by adding delegations of
WNat and stakes in the P-Chain, using a checkpoint system. Past stakes and delegations
within a specific reward epoch are retrieved at a specific vote power block. This block is
a random block in the range of the epoch's blocks calculated using a safe random
number.

This system requires to be always updated as it makes several critical time-sensitive
calculations. This heartbeat is made by the Flare Daemon, that daemonizes the system
once per block. On top of each block, calling daemonize() performs the following core
actions:

Track down which epochs are ready to be voted
Allow reward claiming of past epochs
Cleanup older epochs
Get random numbers and set vote power blocks
Update voting power
Prepare and update the set of voters that can have subsidized calls in commit-
reveal scheme

4.1 Security assumptions

© Coinspect 2024 10 / 70

For this security assessment, Coinspect made the following assumptions:

The governanceSettings, initialGovernance and addressUpdater,
signingPolicySetter and other data is correctly set on deployment. All other core
variables that have a setter can change in the future and could adopt any allowed
value by the contract.
The flareSystemManager address can only be used in certain conditions protected by
consensus software.
The majority of voters are non-malicious and do not collude.

4.2 Decentralization

The voting integrity of the protocol depends on the assumption that voters do not
collude. This assumption is important as colluding voters could break how the system
works by simply voting corrupted or malicious data. For voters that misbehave, the
governance has the privilege to chill (pause) their voting power for a specific amount of
epochs.

A base governance along with its executor is implemented and many actions of the
protocol are privileged. Those privileged actions are mainly adding or removing
configurations, upgrading contract addresses and setting the value for core operational
variables. Although the governance is considered trusted, those setters that change
critical variables have also in place range checks to prevent breaking the system with
forbidden values.

The protocol has multiple contracts that communicate with each other. Because of this,
the targets (addresses) on each contract can be updated by the governance. This
operational aspect is critical, since the whole system might work unexpectedly in the
event of not updating the target's addresses when required. It is relevant to mention
that setting the wrong contracts (e.g., bad addresses or outdated versions) might cause
irreversible impact of unknown risk in the whole system.

4.3 Code Quality & Testing

Coinspect observed the project's code quality is high, taking recommendations of
security assessments made for the previous version. Also, the codebase includes
relevant comments and NatSpec.

Regarding the testing suite, most tests rely on mock calls and fail to reproduce threat
scenarios that might derive from the interaction between contracts. Coinspect

https://docs.soliditylang.org/en/latest/natspec-format.html

© Coinspect 2024 11 / 70

suggests including more adversarial integration tests that do not use mock calls.

© Coinspect 2024 12 / 70

5. Detailed Findings

FSC-01

Voters can use any signing policy to vote for
a new one

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

contracts/protocol/implementation/Relay.sol

Description

A set of voters that had, at any point, reached the threshold needed to pass votes
can reuse the signing policy that gave them such powers to relay a new signing
policy. This means they can finalize a new signing policy that gives them power
again even when they have no stake anymore or were penalized by the system.

© Coinspect 2024 13 / 70

The problem stems from the fact that the timing checks intended to disallow
relayers from providing a siging policy that does not match the message's current
votingRoundId are not not performed when relaying signing policies.

Messages for subprotocols must follow three precise timing rules:

1. A message must not indicate a signing policy for a reward epoch bigger than
what is calculated from its votingRoundId

2. If a message indicates a singing policy for the same reward epoch that
calculated from its votingRoundId, that signing policy must have been
initialized.

3. If a message indicates a signing policy for a reward epoch that is behind what
is calculated from its votingRoundId, then this was the last signing policy
available and the message is valid with an increased threshold or the
indicated singing policy was the one active on that reward epoch.

These invariants are crucial to prevent relayers from providing signing policies
either from the future or from the past. Unfortunately, this check is not done on
the finalization of singing policies themselves, as they are inside a conditional that
checks if the protocolId is bigger than zero: if gt(protocolId, 0).

What this means is that a set of voters that for any reason got a majority of the
votes at any point in time can relay a new, arbitrary, singing policy for the next
reward epoch. This even applies to voters that get a majority for a non-initialized
signing policy.

Therefore, the strategies to prevent evil majorities -- such as slashing or blacklists
-- will not be effective.

To be exploitable, the noSigningPolicyRelay flag must be set to false.

Recommendation

Ensure the finalization of new signing policies is contingent upon the validation
against the last active and authorized signing policy's parameters, including voters,
weight, and other relevant metadata.

Status

Fixed on commit 421fa87c16af78416bd61bdbc97559006249d07f.

© Coinspect 2024 14 / 70

A check on relay() was added that allows using only the last initialized policy for
old policies.

© Coinspect 2024 15 / 70

FSC-02

Signing policies of certain length break the
contract

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

contracts/protocol/implementation/Relay.sol

Description

Setting a signing policy of a specific length will break the relay contract because
the hash calculated by the top-level-client and the contract will differ for the
same signing policy.

To understand the issue, it is important to take into account that a key invariant of
the relay contract is that the hash of the
signing policy passed in the calldata is the same as the one stored in the
toSigningPolicyHash mapping:

 if iszero(
 eq(
 mload(add(memPtr, M_2_signingPolicyHashTmp)),

© Coinspect 2024 16 / 70

 mload(add(memPtr, M_3_existingSigningPolicyHashTmp))
)
) {
 revertWithMessage(memPtr, "Signing policy hash
mismatch", 28)
 }

To calculate the contents of the calldata signinig policy, the
calculateSigningPolicyHash is used:

 function calculateSigningPolicyHash(
 _memPos,
 _calldataPos,
 _policyLength
) -> _policyHash {
 // first byte
 calldatacopy(_memPos, _calldataPos, 32)
 // all but last 32-byte word
 let endPos := add(_calldataPos, mul(div(_policyLength,
32), 32))
 for {
 let pos := add(_calldataPos, 32)
 } lt(pos, endPos) {
 pos := add(pos, 32)
 } {
 calldatacopy(add(_memPos, M_1), pos, 32)
 mstore(_memPos, keccak256(_memPos, 64))
 }

 // handle the remaining bytes
 mstore(add(_memPos, M_1), 0)
 calldatacopy(add(_memPos, M_1), endPos,
mod(_policyLength, 32)) // remaining bytes
 mstore(_memPos, keccak256(_memPos, 64))
 _policyHash := mload(_memPos)
 }

This function has one specific behavior which is not found in the top-level-client
implementation: the function in Relay.sol always pads the signing policy with
zero bytes until its length is a multiple of 32. It does this even when the signing
policy length is already a multiple of 32.

Contrast this with top-level-behavior, which pads the signing policy only if
needed:

func SigningPolicyHash(signingPolicy []byte) []byte {
if len(signingPolicy)%32 != 0 {

signingPolicy = append(signingPolicy, make([]byte, 32-
len(signingPolicy)%32)...)

}
hash := crypto.Keccak256(signingPolicy[:32],

signingPolicy[32:64])
for i := 2; i < len(signingPolicy)/32; i++ {

hash = crypto.Keccak256(hash, signingPolicy[i*32:

© Coinspect 2024 17 / 70

(i+1)*32])
}
return hash

}

All in all, this results in the two hashes not coinciding for the same singing policy.
While the off chain program will calculate the hash of [data], the smart contract
will calculate the hash of [data : 32-zero-bytes].

This mismatch likely impacts several interactions between the components. One
of the most important is the process of signing a new policy: when the Top Level
Client calls SignNewSigningPolicy, it will send its interpretation of the
newSigningPolicyHash, which will cause the transaction to revert as the first check
done by SignNewSigningPolicy in the flareSystemManager.sol smart contract is:

 require(_newSigningPolicyHash != bytes32(0) &&
_getSigningPolicyHash(_rewardEpochId) == _newSigningPolicyHash,
 "new signing policy hash invalid");

The only reason why this issue is of low-likelihood is that signing policies have a
size of 43 + 22 * len(voters). By mere chance, the result is never a multiple of
32. Nevertheless, even a slight change of length in the signing policy to 42 + 22 *
len(voters) would make this issue likely to occur.

It is worth highlighting as well that the hashing system in the smart contracts has
the same collision problem that was described in the top-level-client review
under ID TOP-05.

Recommendation

Make sure the hashing of the two system matches in every scenario.

Status

Fixed on commit 421fa87c16af78416bd61bdbc97559006249d07f.

The hashing function now only considers non-zero remaining bytes.

© Coinspect 2024 18 / 70

FSC-03

Relayers can set an invalid signing policy

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

contracts/protocol/implementation/Relay.sol

Description

Both voters and the signingPolicySetter can set an invalid singing policy which
would result in service disruption.

In particular, there is no check that the weights of the voters are above the
threshold. If this condition is not met, finalizing new messages will be impossible.

It is worth noting that there are other checks to prevent signing policies from
being invalid, for example by making sure that the voters array is not empty.

Recommendation

Check the the sum of weights of the policy reached the threshold.

© Coinspect 2024 19 / 70

Status

Fixed on commit 88c2a762ce44a2bdc59666d4cada6c216d02c2ac.

A check to prevent adding policies with less weight than its threshold was added
to setSigningPolicy().

© Coinspect 2024 20 / 70

FSC-04

Callers can mistakenly use unsafe random
values

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

contracts/protocol/implementation/Submission.sol

contracts/protocol/implementation/Relay.sol

Description

The random-providing API of the contracts invites callers to use an unsafe random
value, as its main method getCurrentRandom() does not indicate that the return
value might be unsafe.

For the Submission.sol contract, there is a triplet of methods that can return a
random value. getCurrentRandom(), getCurrentRandomWithQuality and
getCurrentRandomWithQualityAndTimestamp(). None of this methods is labeled as
unsafe.

For the Relay.sol contract, the only method is getCurrentRandom(). While this
method returns the information necessary to check if the random is safe to use,

© Coinspect 2024 21 / 70

the caller is still expected to manually check if the returned values are safe.

Recommendation

Provide an API that clearly distinguishes between safe and unsafe variants of the
methods.

The safe variants should only return values if they are safe to use by checking
interanlly that isSecureRandom is set to true.

Unsafe variants should be labeled with a name such as unsafe or clearly
documented as such and callers can use them if they do not need a random
number.

Status

Fixed on commit 103929a40650c5d8c427e97acad88172da4c31a3. Relevant comments
were added to the NatSpec on commit
8b5248d6d3a97a7cfc55f4072f445ac93fe8fc11.

The function getCurrentRandom() now reverts if the random is unsafe. For possibly
unsafe call, users can still call getCurrentRandomWithQuality().

© Coinspect 2024 22 / 70

FSC-05

Arbitrary values for firstVotingRoundStartTs
disrupt the functioning of FTSOs and Stake
Mirrorings

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/protocol/implementation/Relay.sol

Description

A misconfiguration in the deployment of the Relay contract will trigger a revert in
other parts of the protocol restricting key functionalities such as publishing FTSO
feeds or mirroring stakes.

Additionally, because relay() is time-agnostic and depends on round IDs, setting
an overly high firstVotingRoundStartTs causes a mismatch between this value
and the actual start timestamp.

constructor():

© Coinspect 2024 23 / 70

stateData.firstVotingRoundStartTs = _firstVotingRoundStartTs;

When firstVotingRoundStartTs is greater than the timestamp, the following
function reverts:

/**
 * @inheritdoc IRelay
 */
function getVotingRoundId(uint256 _timestamp) external view returns
(uint256) {
 require(_timestamp >= stateData.firstVotingRoundStartTs, "before
the start");
 return (_timestamp - stateData.firstVotingRoundStartTs) /
stateData.votingEpochDurationSeconds;
}

By setting an overly high firstVotingRoundStartTs value, the FTSO Feed
Publisher contract will fail to publish feeds:

 function _getMinVotingRoundId() internal view returns(uint256
_minVotingRoundId) {
 uint256 currentVotingRoundId =
relay.getVotingRoundId(block.timestamp);
 if (currentVotingRoundId > feedsHistorySize) {
 _minVotingRoundId = currentVotingRoundId -
feedsHistorySize;
 }
 }

Recommendation

Ensure before the deployment that the firstVotingRoundStartTs matches the one
specified by the initial signing policy.

Proof of Concept

The following test shows how it is impossible to get the current voting round ID
after a misconfiguration of the Relay contract. Also, shows how it is possible to
make relay calls regardless the first voting round start value.

When trying to get the current votingRoundId, the contract reverts.

 it("Should relay a message and not fail to get current
votingRoundId", async () => {

© Coinspect 2024 24 / 70

 // This test requires to modify const firstVotingRoundStartSec =
4294967295; from the setups made in before()
 const messageHash = ProtocolMessageMerkleRoot.hash(messageData);
 const signatures = await generateSignatures(
 accountPrivateKeys,
 messageHash,
 N / 2 + 1
);

 const relayMessage = {
 signingPolicy: signingPolicyData,
 signatures,
 protocolMessageMerkleRoot: messageData,
 };

 const fullData = RelayMessage.encode(relayMessage);
 const receipt = await web3.eth.sendTransaction({
 from: signers[0].address,
 to: relay.address,
 data: selector + fullData.slice(2),
 })
 await expectEvent.inTransaction(receipt!.transactionHash, relay,
"ProtocolMessageRelayed", {
 protocolId: toBN(messageData.protocolId),
 votingRoundId: toBN(messageData.votingRoundId),
 isSecureRandom: messageData.isSecureRandom,
 merkleRoot: merkleRoot,
 });
 console.log("Gas used:", receipt?.gasUsed?.toString());
 const confirmedMerkleRoot = await
relay.getConfirmedMerkleRoot(messageData.protocolId,
messageData.votingRoundId);
 expect(confirmedMerkleRoot).to.equal(merkleRoot);

 let stateData = await relay.stateData();

expect(stateData.randomNumberProtocolId.toString()).to.be.equal(message
Data.protocolId.toString());

expect(stateData.randomVotingRoundId.toString()).to.be.equal(messageDat
a.votingRoundId.toString());

expect(stateData.isSecureRandom.toString()).to.be.equal(messageData.isS
ecureRandom.toString());

 expect(RelayMessage.decode(fullData)).not.to.throw;
 const decodedRelayMessage = RelayMessage.decode(fullData);

 expect(RelayMessage.equals(relayMessage,
decodedRelayMessage)).to.be.true;

 let blockTimestamp = (await
ethers.provider.getBlock('latest')).timestamp;
 // The following call should not fail under normal conditions
 console.log('Trying to get the current voting round Id...')
 await relay.getVotingRoundId(blockTimestamp)
 });

© Coinspect 2024 25 / 70

Status

Acknowledged.

The Flare Team recognizes the importance of the configuration settings during the
initial deployment. They have committed to implementing stringent precautions to
ensure that these settings are carefully managed and correctly implemented to
avoid potential issues.

© Coinspect 2024 26 / 70

FSC-06

RewardEpochId size mismatch between
contract and top-level-client

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/protocol/implementation/Relay.sol

Description

The RewardEpochId is assumed to be of 3 bytes in the Relay.sol contract, but the
top-level-client encodes it as a uint32 which occupies 4 bytes.

The mismatch is apparent when comparing the mask used in Relay.sol to extract
it and the encoding code of the top-level-client.

 uint256 private constant MD_MASK_rewardEpochId = 0xffffff;

epochBytes := shared.Uint32toBytes(uint32(s.rewardEpochId))

© Coinspect 2024 27 / 70

This issue is informational as the mismatch would only be apparent for epoch IDs
of size bigger than 2**24-1.

Recommendation

Make sure that the off chain component and the on chain contract agree on the size
of the structures they must share.

Status

Acknowledged.

The Flare Team has acknowledged this issue and is considering the addition of a
check statement in the Flare Systems Client. This adjustment would occur when
the size required to accommodate the rewardEpochId exceeds current
specifications. However, it's important to note that the current 3-byte size is
expected to be sufficient for the system's anticipated lifetime.

© Coinspect 2024 28 / 70

FSC-07

Attacker could use submitAndPassContract
to waste resources

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/protocol/implementation/Submission.sol

Description

The Submission contract's method submitAndPass calls a configurable method of a
configurable address. Because these calls are subsidized, if the called method
returns an arbitrary amount of bytes, an attacker could use this subsidy to force
the contract to use a large amount of gas without incurring in a big cost
themselves.

This transactions would then have to be replicated by all peers.

Recommendation

© Coinspect 2024 29 / 70

Make sure the Governance is aware of this risk and that the selected call through
submitAndPass cannot return arbitrary bytes amounts.

Status

Acknowledged.

The Flare Team stated that they are aware of the underlying risks related to the
submitAndPass contract, and that they plan to provide its implementation when the
FTSO Fast Updates system is reviewed.

© Coinspect 2024 30 / 70

FSC-08

Permanent data staleness threatens financial
stability of third parties

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

contracts/ftso/implementation/FtsoFeedPublisher.sol

Description

The current FTSO feed can be manipulated to always return the same data,
potentially disrupting how third parties rely on FTSO data for financial calculations
based on a price feed. Specifically, the getCurrentFeed() method could be forced
to consistently return the same data, with no possibility of updating it in
production other than creating a new feed for this asset.

When publishing feed data, this check determines whether the lastFeeds mapping
should be updated:

 bool addLastFeed = feed.votingRoundId >
lastFeeds[feed.name].votingRoundId;

© Coinspect 2024 31 / 70

The publisher can pass an overly high value for feed.votingRoundId, setting the
latest feed's data:

 if (addLastFeed) {
 lastFeeds[feed.name] = feed;
 }

Once a feed with a voting round id value set to type(uint32).max (as voting round
ids are 32-bit variables) is established, no subsequent voting round ID will be
greater than this value. Consequently, addLastFeed will always be false for any
other round id, preventing updates to the lastFeeds mapping.

Feeds can be updated by anyone passing the feed proofs or by the feed publisher
(proofs are not required).

Recommendation

Ensure that last feeds can be updated up to a maximum number of rounds in the
future.

Status

Fixed on commit 800405c8d6fa607a20ab62099e45bed91c32d07c.

A check to verify that the round id is not in the future was added to the FTSO feed
publish process.

Proof of Concept

The following scenario demonstrates how a feed can be made permanently stale.
This is achieved by publishing a feed with an excessively high voting round ID.
Subsequent assertions illustrate that even after attempting to publish a new feed,
the value reported remains unchanged from the original.

Output

[FAIL. Reason: Assertion failed.] testCoinspectMakeFeedStale() (gas:
171687)
Logs:

© Coinspect 2024 32 / 70

 Error: a == b not satisfied [uint]
 Left: 4294967295
 Right: 3
 Error: a == b not satisfied [int]
 Left: 100
 Right: 200
 Error: a == b not satisfied [uint]
 Left: 1000
 Right: 2000
 Error: a == b not satisfied [int]
 Left: 2
 Right: 4

Test

 function testCoinspectMakeFeedStale() public {
 testSetFeedsPublisher();
 _mockGetVotingRoundId(block.timestamp, 4);

 uint32 roundId = type(uint32).max;
 IFtsoFeedPublisher.Feed memory feed =
 IFtsoFeedPublisher.Feed(roundId, feedName1, int32(100),
uint16(1000), int8(2));

 IFtsoFeedPublisher.Feed[] memory feeds = new
IFtsoFeedPublisher.Feed[](1);
 feeds[0] = feed;
 vm.prank(feedsPublisher);
 ftsoFeedPublisher.publishFeeds(feeds);

 IFtsoFeedPublisher.Feed memory getFeed =
ftsoFeedPublisher.getCurrentFeed(feedName1);
 assertEq(getFeed.votingRoundId, roundId);
 assertEq(getFeed.name, feedName1);
 assertEq(getFeed.value, int32(100));
 assertEq(getFeed.turnoutBIPS, uint16(1000));
 assertEq(getFeed.decimals, int8(2));

 // Then, when setting for the next epoch, getCurrentFeed will
still return the same
 roundId = 3;
 feed = IFtsoFeedPublisher.Feed(roundId, feedName1, int32(200),
uint16(2000), int8(4));
 feeds[0] = feed;
 vm.prank(feedsPublisher);
 ftsoFeedPublisher.publishFeeds(feeds);

 getFeed = ftsoFeedPublisher.getCurrentFeed(feedName1);
 // all the following assertions will fail because it will still
return the previous feed
 assertEq(getFeed.votingRoundId, roundId);
 assertEq(getFeed.name, feedName1);
 assertEq(getFeed.value, int32(200));
 assertEq(getFeed.turnoutBIPS, uint16(2000));
 assertEq(getFeed.decimals, int8(4));
 }

© Coinspect 2024 33 / 70

FSC-09

Inflation receiver childs might not implement
key functions

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/inflation/implementation/InflationReceiver.sol

Description

Declaring virtual functions without providing an implementation increases the risk
that contracts extending the InflationReceiver might not override these functions
with the necessary logic. This oversight is possible because the contract will still
compile without these implementations.

The InflationReceiver contract, which handles inflation proceeds, currently
implements two key virtual functions as empty instead of leaving them purely
abstract:

 /**
 * Method that is called when new daily inflation is authorized.
 */

© Coinspect 2024 34 / 70

 function _setDailyAuthorizedInflation(uint256 _toAuthorizeWei)
internal virtual {}

 /**
 * Method that is called when new inflation is received.
 */
 function _receiveInflation() internal virtual {}

Those two functions allow the inheritor to execute further logic when receiving
inflation proceeds or setting the daily authorization inflation.

Recommendation

Make those two functions abstract. This will require overriding and implementing
them when inheriting the abstract contract.

Status

Fixed on commit 481fe3e0d263286f0fe39f36882a5aa8d0264e59.

The mentioned functions are now abstract.

© Coinspect 2024 35 / 70

FSC-10

Voters can have zero voting power after
normalization

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/protocol/implementation/VoterRegistry.sol

Description

Voting weight snapshots for a signing policy can yield in zero voting power for
voters that have less weight, disrupting the weight accumulation when signing for
rewards.

When initializing the next singning policy, a snapshot of each voter's weight is
made via createSigningPolicySnapshot(). This process also normalizes the
weight in a uint16 base:

 _normalisedWeights[i] = uint16((weights[i] * UINT16_MAX) /
weightsSum); // weights[i] <= weightsSum
 _normalisedWeightsSum += _normalisedWeights[i];

© Coinspect 2024 36 / 70

When registering a voter it can be seen that each user's weight is a uint256
number:

 uint256 weight =
flareSystemsCalculator.calculateRegistrationWeight(_voter,
_rewardEpochId, votePowerBlock);

Voters with less weight might end up having zero voting power after
normalization, making their votes worthless when signing for rewards via
FlareSystemsManager.signRewards():

 (address voter, uint16 weight) =
 voterRegistry.getVoterWithNormalisedWeight(_rewardEpochId,
signingPolicyAddress); // <--- weight could be zero
 require(voter != address(0), "signature invalid");
 require(state.rewardVotes[messageHash].voters[voter].signTs ==
0, "voter already signed");
 // save voter's timestamp and block number
 state.rewardVotes[messageHash].voters[voter] =
VoterData(block.timestamp.toUint64(), block.number.toUint64());
 // check if signing threshold is reached
 bool thresholdReached =
state.rewardVotes[messageHash].accumulatedWeight + weight >
state.threshold;

Recommendation

Consider using a bigger data type for the normalized weights.

Status

Acknowledged.

The Flare Team has acknowledged this scenario, noting that the chosen
normalization/scaling factor was specifically designed to minimize relaying costs.

Proof of Concept

This scenario demonstrates a situation where only one account accrues all the
normalized voting weight, effectively leaving other accounts with zero normalized
weight. It involves creating a snapshot for a signing policy, which then normalizes
each user's weight and displays the outcome.

© Coinspect 2024 37 / 70

Prerequisites

The following modifications were made to the internal function
_createInitialVoters() in VoterRegistry.t.sol, allowing for the setup of
different starting voting powers for each user:

 // weights
 // @Coinspect Review modifications
 uint256 initialVoterWeight = (i == _num - 1) ? type(uint32).max :
10000 * (i + 1);
 console.log("Assigning weight: %s", initialVoterWeight);
 initialVotersWeights.push(initialVoterWeight);

Output

 Assigning weight: 10000
 Assigning weight: 20000
 Assigning weight: 30000
 Assigning weight: 4294967295

 Getting normalized weights calling getVoterWithNormalisedWeight()
 Norm Weight for user: 0x785E2a241F1e59c0264e0Ae81CaD20F178919efd = 0
 Norm Weight for user: 0x9A346D6F41D268704c28c396Aa81b14683223653 = 0
 Norm Weight for user: 0xC5aFb58ba22614335242A1e57bCcf0bFD97F15eD = 0
 Norm Weight for user: 0x826c9ab8aF8944f59e96D7d524a3F76c2AfA900c =
65534

Test

 function testCoinspect_ZeroVotingPowerAfterNormalization() public {
 // derived from
 IVoterRegistry.Signature memory signature;

 _mockGetCurrentEpochId(0);
 _mockGetVoterAddressesAt();
 _mockGetPublicKeyOfAt();
 _mockGetVoterRegistrationData(10, true);
 _mockVoterWeights();
 vm.prank(mockFlareSystemsManager);

voterRegistry.setNewSigningPolicyInitializationStartBlockNumber(1);

 uint256 weightsSum = 0;
 for (uint256 i = 0; i < initialVoters.length; i++) {
 signature = _createSigningPolicyAddressSignature(i, 1);
 voterRegistry.registerVoter(initialVoters[i], signature);
 weightsSum += initialVotersWeights[i];
 }

 // create signing policy snapshot
 vm.mockCall(

© Coinspect 2024 38 / 70

 mockEntityManager,
 abi.encodeWithSelector(
 IIEntityManager.getSigningPolicyAddresses.selector,
 initialVoters,

voterRegistry.newSigningPolicyInitializationStartBlockNumber(1)
),
 abi.encode(initialSigningPolicyAddresses)
);
 vm.mockCall(
 mockEntityManager,
 abi.encodeWithSelector(
 IIEntityManager.getPublicKeys.selector,
 initialVoters,

voterRegistry.newSigningPolicyInitializationStartBlockNumber(1)
),
 abi.encode(initialPublicKeyParts1, initialPublicKeyParts2)
);
 vm.prank(mockFlareSystemsManager);
 (address[] memory signPolAddresses, uint16[] memory
normWeights, uint16 normWeightsSum) =
 voterRegistry.createSigningPolicySnapshot(1);

 assertEq(initialSigningPolicyAddresses.length,
signPolAddresses.length);
 uint16 sum = 0;
 uint256 voterWeight;
 uint16 normVoterWeight;
 address _gVWNWVoter;
 uint16 _gVWNWNormalizedWeigt;

 console.log("\n Getting normalized weights calling
getVoterWithNormalisedWeight()");
 for (uint256 i = 0; i < initialVoters.length; i++) {
 assertEq(signPolAddresses[i],
initialSigningPolicyAddresses[i]);
 voterWeight = initialVotersWeights[i];
 normVoterWeight = uint16(voterWeight * UINT16_MAX /
weightsSum);
 assertEq(normWeights[i], normVoterWeight);
 sum += normVoterWeight;

 vm.mockCall(
 mockEntityManager,
 abi.encodeWithSelector(

IEntityManager.getVoterForSigningPolicyAddress.selector,
 initialSigningPolicyAddresses[i],

voterRegistry.newSigningPolicyInitializationStartBlockNumber(1)
),
 abi.encode(initialVoters[i])
);
 (_gVWNWVoter, _gVWNWNormalizedWeigt) =
 voterRegistry.getVoterWithNormalisedWeight(1,
initialSigningPolicyAddresses[i]);
 console.log("Norm Weight for user: %s = %s", _gVWNWVoter,
_gVWNWNormalizedWeigt);
 }

© Coinspect 2024 39 / 70

 assertEq(sum, normWeightsSum);

 (uint128 _sum, uint16 _normSum, uint16 _normSumPub) =
voterRegistry.getWeightsSums(1);
 assertEq(_sum, weightsSum);
 assertEq(_normSum, normWeightsSum);
 // only voter0 registered public key
 assertEq(_normSumPub, uint16(initialVotersWeights[0] *
UINT16_MAX / weightsSum));
 }

© Coinspect 2024 40 / 70

FSC-11

Voter cap mismatch endangers system's
voting integrity

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

contracts/protocol/implementation/FlareSystemsManager.sol

Description

The maximum amount of voters allowed for registration can be smaller than the
minimum number of votes checked on the System Manager, as a result, voting
registration will always be enabled until the minimum duration in blocks or time
passes.

In the context of the System Manager, it is checked that the voters registered
exceeds the minimum number of voters:

 function _isVoterRegistrationEnabled(uint256 _rewardEpoch,
RewardEpochState storage _state)
 internal
 view
 returns (bool)

© Coinspect 2024 41 / 70

 {
 return _state.randomAcquisitionEndTs != 0
 && (
 block.timestamp <= _state.randomAcquisitionEndTs +
voterRegistrationMinDurationSeconds
 || block.number <= _state.randomAcquisitionEndBlock
+ voterRegistrationMinDurationBlocks
 ||
voterRegistry.getNumberOfRegisteredVoters(_rewardEpoch) <
signingPolicyMinNumberOfVoters
);
 }

However, in the Voter Registry there is a cap for the amount of maximum voters
that can be registered:

 if (length < maxVoters) {
 // we can just add a new one
 votersAndWeights.voters.push(_voter);
 votersAndWeights.weights[_voter] = weight;
 } else {
 // find minimum to kick out (if needed)
 ...
 }

The described scenario could happen since there are no checks that guarantee that
the signingPolicyMinNumberOfVoters is smaller than voterRegistry.maxVoters.

Recommendation

Check that the signingPolicyMinNumberOfVoters is smaller than
voterRegistry.maxVoters when updating the setting.

Status

Fixed on commit 8e4be77f53e603453ebe2ba06c189a7b63420f18.

A check preventing the mentioned scenario was added into the VoterRegistry and
SystemManager contracts.

© Coinspect 2024 42 / 70

FSC-12

Governance calls can be return bombed

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/governance/implementation/GovernedBase.sol

Description

Governance calls copy all the return data into memory when processing a revert
message, as a result, outstanding amounts of gas might be consumed if the callee
return-bombs the caller (Governance):

 function _passReturnOrRevert(bool _success) private pure {
 // pass exact return or revert data - needs to be done in
assembly
 //solhint-disable-next-line no-inline-assembly
 assembly {
 let size := returndatasize()
 let ptr := mload(0x40)
 mstore(0x40, add(ptr, size))
 returndatacopy(ptr, 0, size)
 if _success {
 return(ptr, size)
 }

© Coinspect 2024 43 / 70

 revert(ptr, size)
 }
 }

As all the return data is copied into memory, it could increase the gas spent by
expanding the memory used with a long revert message.

Recommendation

Add a return data size limit. Nomad implemented this in their ExcessivelySafeCall
Repository.

Status

Acknowledged.

The Flare Team stated that there would be no chance of return-bombs since all
contracts planned to be called from are known and trusted.

https://github.com/nomad-xyz/ExcessivelySafeCall

© Coinspect 2024 44 / 70

FSC-13

Attacker can gain unfair voting power by
timing first daemonization

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

contracts/protocol/implementation/FlareSystemsManager.sol

Description

Attackers can try to predict when the first call to daemonize() will be made after
the contract's deployment and manipulate their stakes, delegations, or WNat
balance, to unfairly increase their initial voting power.

The Systems Manager contract uses initialRandomVotePowerBlockSelectionSize
to set the vote power block when the random number was unsafe. This variable is
meant to be used only in the beginning to select the initial vote power block:

 function _selectVotePowerBlock(uint24 _nextRewardEpochId, uint256
_random)
 internal view
 returns(uint64 _votePowerBlock)
 {

© Coinspect 2024 45 / 70

 // randomTs > state.randomAcquisitionStartTs && isSecureRandom
== true
 uint64 startBlock = rewardEpochState[_nextRewardEpochId -
1].randomAcquisitionStartBlock;
 // 0 < endBlock < block.number
 uint64 endBlock =
rewardEpochState[_nextRewardEpochId].randomAcquisitionStartBlock;
 uint64 numberOfBlocks;
 if (startBlock == 0) {
 // endBlock > 0 && initialRandomVotePowerBlockSelectionSize
> 0
 numberOfBlocks = Math.min(endBlock,
initialRandomVotePowerBlockSelectionSize).toUint64();
 } else {
 // endBlock > startBlock
 numberOfBlocks = endBlock - startBlock;
 }

 //slither-disable-next-line weak-prng
 uint256 votePowerBlocksAgo = _random % numberOfBlocks; //
numberOfBlocks > 0
 _votePowerBlock = endBlock - votePowerBlocksAgo.toUint64();
 }

Since the value for initialRandomVotePowerBlockSelectionSize according to the
deployment config files (deployment/utils/deploy-contracts.ts) is 1, it means
that votePowerBlocksAgo will always be one block before the first daemonization's
block, which is set as randomAcquisitionStartBlock.

The test provided by the project, testSelectVotePowerBlockUnsecureRandom,
demonstrates how the first vote power block can be easily predicted by knowing
the block number at which the first daemonization occurred (block 199 in this case).
Additionally, the initial configurations used in this test
(initialRandomVotePowerBlockSelectionSize set to 5) do not align with the
configurations intended for deployment
(initialRandomVotePowerBlockSelectionSize set to 1).

Test provided by the project

 // use current vote power block; initial reward epoch -> use
unsecure random
 function testSelectVotePowerBlockUnsecureRandom() public {
 uint64 currentTime = uint64(block.timestamp) +
REWARD_EPOCH_DURATION_IN_SEC - 2 * 3600;
 vm.warp(currentTime);

 _mockToSigningPolicyHash(1, bytes32(0));

 // start random acquisition
 vm.roll(199);
 vm.startPrank(flareDaemon);
 flareSystemsManager.daemonize();

© Coinspect 2024 46 / 70

 // select vote power block
 // move to the end of acquisition period and don't get secure
random
 vm.roll(block.number + 15000 + 1);
 vm.warp(block.timestamp + uint64(8 * 60 * 60 + 1));
 vm.mockCall(
 mockRelay,
 abi.encodeWithSelector(IRelay.getRandomNumber.selector),
 abi.encode(123, false, currentTime + 1)
);

 vm.expectEmit();
 emit VotePowerBlockSelected(1, 196, uint64(block.timestamp));
 flareSystemsManager.daemonize();
 // voter registration started
 // endBlock = 199, _initialRandomVotePowerBlockSelectionSize =
5
 // numberOfBlocks = 5, random (=123) % 5 = 3 -> vote power
block = 199 - 3 = 196
 assertEq(flareSystemsManager.getVotePowerBlock(1), 196);
 }

Recommendation

Coinsider restricting sensitive actions that depend on the vote power block while
the system is bootstrapping.

Status

Fixed on commit e577e9c6c230f6e8ea202d340545219d06284756.

The Flare Team provided a script that will run to provide the initial random number
as well as including each chain's config parameters, mitigating the risk of this
issue.

© Coinspect 2024 47 / 70

FSC-14

Evil voters can steal voting power through
node registration

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

contracts/protocol/implementation/EntityManager.sol

contracts/protocol/implementation/FlareSystemsCalculator.sol

Description

Attackers can target users mirroring a node in the stake mirroring service and
register it directly in the Entity Manager. This grants attackers with outstanding
voting power they don't own, effectively stealing it from unsuspecting users.

The node ID registration process is needed when a user wants to claim a node as
theirs, and can only be done once:

 function registerNodeId(bytes20 _nodeId) external {
 require(nodeIdRegistered[_nodeId].addressAtNow() == address(0),
"node id already registered");
 register[msg.sender].nodeIds.addRemoveNodeId(_nodeId, true,
maxNodeIdsPerEntity);

© Coinspect 2024 48 / 70

 nodeIdRegistered[_nodeId].setAddress(msg.sender);
 emit NodeIdRegistered(msg.sender, _nodeId);
 }

Having nodes registered enables a new stream of accruing voting weight
accounted by the System Calculator:

 bytes20[] memory nodeIds = entityManager.getNodeIdsOfAt(_voter,
_votePowerBlockNumber);
 uint256[] memory nodeWeights;
 if (address(pChainStakeMirror) != address(0)) {
 nodeWeights = pChainStakeMirror.batchVotePowerOfAt(nodeIds,
_votePowerBlockNumber);
 for (uint256 i = 0; i < nodeWeights.length; i++) {
 if (_rewardEpochId >=
voterRegistry.chilledUntilRewardEpochId(nodeIds[i])) {
 _registrationWeight += nodeWeights[i];
 } else {
 nodeWeights[i] = 0;
 }
 }
 }

The underlying node's voting power is retrieved from the stake mirroring contract
with batchVotePowerOfAt(nodeIdList, _blockNumber). This function returns the
vote power of a certain array of nodes, regardless of the user that mirrored it. The
mirroring contract has another method that returns the voting power of a node but
filters the owner that made its mirroring, votePowerFromToAt(_owner, _nodeId,
_blockNumber) (not used in any calculation of the System Calculator).

As a consequence, the evil voter doing this registering attack receives the voting
power yielded by a node they do not own, for the time that it's still active in the
mirroring service.

It is worth mentioning that attackers can do this by scanning the victim's StakeData
(containing the nodeId) passed when mirroring a stake. For those stakes that are
already mirrored but not registered in the Entity Manager, attackers can rely on
either scanning the chain's state or filtering events to get those node IDs.

Recommendation

Ideally, ensure that node IDs can only be registered by their owners by requiring a
proof of posession of their node IDs. This would likely require modifying the Flare
node signing mechanism or update the Flare's VM with yet novel BLS
precompiles.

© Coinspect 2024 49 / 70

Alternatively, clearly document how the staking and registering process should be
made and how it mitigates the risks mentioned on this issue. Also, consider
mentioning how the proof of possession process might change in the future if
support for new precompiles or signing mechanisms are added to the Flare
Ecosystem.

Status

Partially fixed on commit ffe36b1cd2419486447ae66d116e7f8ff5bc9984.

A Node Possession Verifier contract was added aiming to fix this issue. Coinspect
found that the minimum key length required was too small to ensure
authentication. Additionally, there is no domain separator in the signature.

The contract is also quite complex, as the ASN.1 format chosen for the key needs
to be interpreted in Solidity, adding to the attack surface and the gas costs for
users. This is likely due to the usage of a RSA key intended to be used in other
contexts, which as repurposed to be useful for proof of possession.

A way to further mitigate the risks associated with the complexity of this solution
is to only use the signatures in case of a dispute for some address: in the best case
scenario, the documentation should guide users towards using the system in a
non-risky way. But if a mistake happens, users can reclaim an address by showing
their signature.

Fixed on commit c5102126d9e6744552dcab2d463b6de68cd3ac11.

The minimum certificate size is now 512. Additionally, 32-byte zero prefixing was
added to the message. Additionally, the Flare Team stated that they are aware of
the underlying risks of performing these type of validations on-chain. Because of
this, they rely on the fact that the Node Posession Verifier contract can be replaced
by the Governance using a setter in the EntityManager.

Proof of Concept

The following tests shows how the user2 registers the nodeId1, property of user1.
As a result, the user2 registers the nodeId1 as theirs, leaving the user1 empty
handed.

Output

© Coinspect 2024 50 / 70

 User1: 0x29E3b139f4393aDda86303fcdAa35F60Bb7092bF
 User2: 0x537C8f3d3E18dF5517a58B3fB9D9143697996802

Node Id1 to register:
 0x01398d9895c8b40fed627cb1663f4b4a0c7d4ce3

 Error: C1 Failed
 Error: a == b not satisfied [uint]
 Left: 0
 Right: 1
 Error: C3 Failed
 Error: a == b not satisfied [uint]
 Left: 0
 Right: 1
 Error: C5 Failed
 Error: a == b not satisfied [address]
 Left: 0x537c8f3d3e18df5517a58b3fb9d9143697996802
 Right: 0x29e3b139f4393adda86303fcdaa35f60bb7092bf

Test

 function testCoinspectRegisterOthersNodeId() public {
 vm.roll(100);
 assertEq(entityManager.getNodeIdsOfAt(user1,
block.number).length, 0);
 assertEq(entityManager.getNodeIdsOf(user1).length, 0);
 assertEq(entityManager.getVoterForNodeId(nodeId1,
block.number), address(0));

 console.log("User1: %s", user1);
 console.log("User2: %s", user2);

 console.log("\nNode Id1 to register:");
 console2.logBytes20(nodeId1);
 console.log("\n");

 // User 2 registers the nodeId1 as theirs
 vm.expectEmit();
 emit NodeIdRegistered(user2, nodeId1);
 vm.roll(101);
 vm.prank(user2);
 entityManager.registerNodeId(nodeId1);

 // When the call of user 1 is executed, it reverts
 // as it is trying to register the same node id again
 vm.startPrank(user1);
 vm.expectRevert("node id already registered");
 entityManager.registerNodeId(nodeId1);
 vm.stopPrank();

 // No node was registered for User1
 bytes20[] memory nodeIds = entityManager.getNodeIdsOfAt(user1,
101);
 assertEq(nodeIds.length, 1, "C1 Failed");
 // assertEq(nodeIds[0], nodeId1);

© Coinspect 2024 51 / 70

 assertEq(entityManager.getNodeIdsOfAt(user1, 100).length, 0,
"C2 Failed");
 assertEq(entityManager.getNodeIdsOf(user1).length, 1, "C3
Failed");
 assertEq(entityManager.getVoterForNodeId(nodeId1, 100),
address(0), "C4 Failed");
 assertEq(entityManager.getVoterForNodeId(nodeId1,
block.number), user1, "C5 Failed");

 // The Node1 is registered by the User 2 (the following
assertions will pass)
 nodeIds = entityManager.getNodeIdsOfAt(user2, 101);
 assertEq(nodeIds.length, 1);
 assertEq(nodeIds[0], nodeId1);
 assertEq(entityManager.getNodeIdsOfAt(user2, 100).length, 0);
 assertEq(entityManager.getNodeIdsOf(user2).length, 1);
 assertEq(entityManager.getVoterForNodeId(nodeId1, 100),
address(0));
 assertEq(entityManager.getVoterForNodeId(nodeId1,
block.number), user2);
 }

© Coinspect 2024 52 / 70

FSC-15

Daemonize calls revert with high reward
expiry offsets

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/protocol/implementation/FlareSystemsManager.sol

Description

Setting an overly high value for the reward expiry offset will trigger a revert on
every daemonize call that attempts to cleanup expired reward epochs.

The updateSettings function allows the governance to modify how Flare's core
operates. Checks are in place to prevent assigning forbidden or out-of-bounds
values to important variables among those that can be updated. This is not the
case for rewardExpiryOffsetSeconds, that can take any value up to
type(uint32).max:

 function _updateSettings(Settings memory _settings) internal {
 require(_settings.signingPolicyThresholdPPM <= PPM_MAX,
"threshold too high");

© Coinspect 2024 53 / 70

 require(_settings.signingPolicyMinNumberOfVoters > 0, "zero
voters");

 randomAcquisitionMaxDurationSeconds =
_settings.randomAcquisitionMaxDurationSeconds;
 randomAcquisitionMaxDurationBlocks =
_settings.randomAcquisitionMaxDurationBlocks;
 newSigningPolicyInitializationStartSeconds =
_settings.newSigningPolicyInitializationStartSeconds;
 newSigningPolicyMinNumberOfVotingRoundsDelay =
_settings.newSigningPolicyMinNumberOfVotingRoundsDelay;
 rewardExpiryOffsetSeconds =
_settings.rewardExpiryOffsetSeconds;
 voterRegistrationMinDurationSeconds =
_settings.voterRegistrationMinDurationSeconds;
 voterRegistrationMinDurationBlocks =
_settings.voterRegistrationMinDurationBlocks;
 submitUptimeVoteMinDurationSeconds =
_settings.submitUptimeVoteMinDurationSeconds;
 submitUptimeVoteMinDurationBlocks =
_settings.submitUptimeVoteMinDurationBlocks;
 signingPolicyThresholdPPM =
_settings.signingPolicyThresholdPPM;
 signingPolicyMinNumberOfVoters =
_settings.signingPolicyMinNumberOfVoters;
 }

Then, the expiry threshold is calculated inside the daemonize call that attemps to
close an expired epoch. This internal call will trigger an underflow when the
rewardExpiryOffsetSeconds is greater than the current timestamp:

 function _closeExpiredRewardEpochs(uint24 _currentRewardEpochId)
internal {
 uint256 expiryThreshold = block.timestamp -
rewardExpiryOffsetSeconds;
 {...}
 }

Recommendation

Add a range check in _updateSettings() for rewardExpiryOffsetSeconds.

Status

Acknowledged.

The Flare Team stated that the values are 7 days on testnets and 90 days on
mainnet for the V1 and they will keep the same values for this V2.

© Coinspect 2024 54 / 70

Proof of Concept

The following test shows how setting a high value for the
rewardExpiryOffsetSeconds triggers an underflow inside daemonize() when
attempting to close expired epochs.

Output

 [FAIL. Reason: Arithmetic over/underflow]
testCoinspectVoterCleanupDaemonizeRevert() (gas: 281257)

Test

 function testCoinspectVoterCleanupDaemonizeRevert() public {
 // Set an overly high value for rewardExpiryOffsetSeconds
 settings = FlareSystemsManager.Settings(1, 2, 3, 4, 5, 6, 7, 8,
9, 10, type(uint32).max);

 vm.prank(governance);
 flareSystemsManager.updateSettings(settings);

 // We care about this value
 assertEq(flareSystemsManager.rewardExpiryOffsetSeconds(),
type(uint32).max);

 vm.mockCall(
 mockRewardManager,
abi.encodeWithSelector(IIRewardManager.closeExpiredRewardEpoch.selector
), abi.encode()
);

 vm.mockCall(
 mockCleanupBlockNumberManager,

abi.encodeWithSelector(IICleanupBlockNumberManager.setCleanUpBlockNumbe
r.selector),
 abi.encode()
);

 vm.prank(governance);
 flareSystemsManager.setTriggerExpirationAndCleanup(true);
 assertEq(flareSystemsManager.triggerExpirationAndCleanup(),
true);

 _initializeSigningPolicyAndMoveToNewEpoch(1);
 vm.startPrank(flareDaemon);
 flareSystemsManager.daemonize();

 // start reward epoch 2
 _initializeSigningPolicyAndMoveToNewEpoch(2);

© Coinspect 2024 55 / 70

 vm.prank(flareDaemon);
 flareSystemsManager.daemonize();

 // start reward epoch 3 and close epoch 1: will underflow
 assertEq(flareSystemsManager.rewardEpochIdToExpireNext(), 1);
 _initializeSigningPolicyAndMoveToNewEpoch(3);
 vm.prank(flareDaemon);
 flareSystemsManager.daemonize();
 }

© Coinspect 2024 56 / 70

FSC-16

Tests heavily relying on mock calls could fail
to reproduce adversarial scenarios

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

test-forge/

Description

The set of tests made using Foundry heavily rely on mock calls made to other
contracts. Although this unit testing approach is not incorrect, it could happen that
several adversarial scenarios might not be properly tested.

For some contracts (e.g. the Voter Registry, System Calculator and Entity
Manager), it could be relevant to make each unit test linking and deploying all the
actual contracts instead of using Foundry mockCalls. This approach reduces the
chances of encountering issues in production that derive from the interactions
between protocol's contracts.

© Coinspect 2024 57 / 70

Recommendation

Include more adversarial tests that do not rely on Foundry's mockCall.

Status

Acknowledged.

The Flare Team stated that they will add more integration between the Foundry
Tests.

© Coinspect 2024 58 / 70

FSC-17

Broken invariant could disrupt how third
parties consume the amount of registered
voters

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/protocol/implementation/VoterRegistry.sol

Description

The functioning of third parties consuming maxVoters() could be disrupted as the
actual amount of voters could be higher than the reported value.

Full voter registries for a specific epoch, will keep this size across all the epoch
and will never decrease only replacing voters with less power. When the
governance decreases the maxVoters's value during the registering process and
the voter's registry is already full, the following invariant is broken:

 getNumberOfRegisteredVoters(_rewardEpochId) <= maxVoters

© Coinspect 2024 59 / 70

 function setMaxVoters(uint256 _maxVoters) external onlyGovernance {
 require(_maxVoters <= UINT16_MAX, "_maxVoters too high");
 maxVoters = _maxVoters;
 }

This happens because _registerVoter() does not remove any voter, replacing
those with less voting power with the new ones:

 uint256 length = votersAndWeights.voters.length;

 if (length < maxVoters) {
 // we can just add a new one
 votersAndWeights.voters.push(_voter);
 votersAndWeights.weights[_voter] = weight;
 } else {
 // find minimum to kick out (if needed)

Recommendation

Document this behavior in the Voter Registry contract. Alternatively, implement a
way to remove voters with less voting power to keep the invariant (amount of
registered voters <= maxVoters).

Status

Acknowledged.

The Flare Team stated this will have no impact since:

maxVoters is only due to change by the governance when registration is not
enabled and
this value will probably only increase

Proof of Concept

The following scenario shows how a maxVoters decrease when the voter registry
for an epoch is full, breaks the before mentioned invariant. This leaves the system
with more voters than the specified maxVoters.

Output

© Coinspect 2024 60 / 70

 Registered voter 0x785E2a241F1e59c0264e0Ae81CaD20F178919efd
 Registered voter 0x9A346D6F41D268704c28c396Aa81b14683223653
 Registered voter 0xC5aFb58ba22614335242A1e57bCcf0bFD97F15eD
 Registered voter 0x826c9ab8aF8944f59e96D7d524a3F76c2AfA900c
 Registered voter 0xECd279Ee12da9D5Ea2E6485963AD39135185F167
 Registered voter 0xe71BDF95c944F4668331625d52fBB9eb101Da602
 Number of registered voters: 6

Voters registered:
 0x785E2a241F1e59c0264e0Ae81CaD20F178919efd
 0x9A346D6F41D268704c28c396Aa81b14683223653
 0xC5aFb58ba22614335242A1e57bCcf0bFD97F15eD
 0x826c9ab8aF8944f59e96D7d524a3F76c2AfA900c
 0xECd279Ee12da9D5Ea2E6485963AD39135185F167
 0xe71BDF95c944F4668331625d52fBB9eb101Da602

 Registered voter 0x90FE592f338ef93bD0150f76A1673eF97a2219c6
 Registered voter 0xe8070EC806CAb48AD3909864D1Ee04c1C366cf7a
 Number of registered voters: 6

Voters registered:
 0x90FE592f338ef93bD0150f76A1673eF97a2219c6
 0xe8070EC806CAb48AD3909864D1Ee04c1C366cf7a
 0xC5aFb58ba22614335242A1e57bCcf0bFD97F15eD
 0x826c9ab8aF8944f59e96D7d524a3F76c2AfA900c
 0xECd279Ee12da9D5Ea2E6485963AD39135185F167
 0xe71BDF95c944F4668331625d52fBB9eb101Da602

Test

 function testCoinspectRegisterVoters() public {
 // Set Up created first 4 voters, [0,1,2,3]
 _createInitialVotersFromIndex(6, 4); // create 6 more voters
starting from index 4

 IVoterRegistry.Signature memory signature;

 _mockGetCurrentEpochId(0);
 _mockGetVoterAddressesAt();
 _mockGetPublicKeyOfAt();
 _mockGetVoterRegistrationData(10, true);
 _mockVoterWeights();

 // The max voters is 6
 vm.prank(governance);
 voterRegistry.setMaxVoters(6);

 vm.prank(mockFlareSystemsManager);

voterRegistry.setNewSigningPolicyInitializationStartBlockNumber(1);

 // Register the first 6 voters (have less voting power than the
rest)
 for (uint256 i = 0; i < 6; i++) {
 signature = _createSigningPolicyAddressSignature(i, 1);

© Coinspect 2024 61 / 70

 vm.expectEmit();
 emit VoterRegistered(
 initialVoters[i],
 uint24(1),
 initialSigningPolicyAddresses[i],
 initialSubmitAddresses[i],
 initialSubmitSignaturesAddresses[i],
 initialPublicKeyParts1[i],
 initialPublicKeyParts2[i],
 initialVotersWeights[i]
);
 voterRegistry.registerVoter(initialVoters[i], signature);
 console.log("Registered voter %s", initialVoters[i]);
 }

 uint256 numOfRegisteredVoters =
voterRegistry.getNumberOfRegisteredVoters(1);
 console.log("Number of registered voters: %s",
numOfRegisteredVoters);
 address[] memory _registeredVoters =
voterRegistry.getRegisteredVoters(1);
 console.log("\nVoters registered:");
 for (uint256 i = 0; i < numOfRegisteredVoters; i++) {
 console.log(_registeredVoters[i]);
 }

 console.log("\n");

 // Then maxVoters is reduced to 3
 vm.prank(governance);
 voterRegistry.setMaxVoters(3);

 for (uint256 i = 6; i < 8; i++) {
 signature = _createSigningPolicyAddressSignature(i, 1);
 vm.expectEmit();
 emit VoterRegistered(
 initialVoters[i],
 uint24(1),
 initialSigningPolicyAddresses[i],
 initialSubmitAddresses[i],
 initialSubmitSignaturesAddresses[i],
 initialPublicKeyParts1[i],
 initialPublicKeyParts2[i],
 initialVotersWeights[i]
);
 voterRegistry.registerVoter(initialVoters[i], signature);
 console.log("Registered voter %s", initialVoters[i]);
 }

 numOfRegisteredVoters =
voterRegistry.getNumberOfRegisteredVoters(1);
 console.log("Number of registered voters: %s",
numOfRegisteredVoters);

 _registeredVoters = voterRegistry.getRegisteredVoters(1);
 console.log("\nVoters registered:");
 for (uint256 i = 0; i < numOfRegisteredVoters; i++) {
 console.log(_registeredVoters[i]);
 }
 }

© Coinspect 2024 62 / 70

With _createInitialVotersFromIndex(uint256 _amt, uint256 _fromIndex):

 function _createInitialVotersFromIndex(uint256 _amt, uint256
_fromIndex) internal {
 uint256 _num = _amt + _fromIndex;
 for (uint256 i = _fromIndex; i < _num; i++) {
 initialVoters.push(makeAddr(string.concat("initialVoter",
vm.toString(i))));
 initialNormWeights.push(uint16(UINT16_MAX / _num));

initialDelegationAddresses.push(makeAddr(string.concat("delegationAddre
ss", vm.toString(i))));

initialSubmitAddresses.push(makeAddr(string.concat("submitAddress",
vm.toString(i))));

initialSubmitSignaturesAddresses.push(makeAddr(string.concat("submitSig
naturesAddress", vm.toString(i))));

 (address addr, uint256 pk) =
makeAddrAndKey(string.concat("signingPolicyAddress", vm.toString(i)));
 initialSigningPolicyAddresses.push(addr);
 initialVotersSigningPolicyPk.push(pk);

 // registered addresses
 initialVotersRegisteredAddresses.push(
 IEntityManager.VoterAddresses(
 initialSubmitAddresses[i],
initialSubmitSignaturesAddresses[i], initialSigningPolicyAddresses[i]
)
);

 // weights
 // @Coinspect Review modifications
 uint256 initialVoterWeight = 10000 * (i + 1);
 initialVotersWeights.push(initialVoterWeight);

 // public keys
 if (i == 0) {

initialPublicKeyParts1.push(keccak256(abi.encode("publicKey1")));

initialPublicKeyParts2.push(keccak256(abi.encode("publicKey2")));
 } else {
 initialPublicKeyParts1.push(bytes32(0));
 initialPublicKeyParts2.push(bytes32(0));
 }

 initialNodeIds.push(new bytes20[](i));
 for (uint256 j = 0; j < i; j++) {
 initialNodeIds[i][j] =
bytes20(bytes(string.concat("nodeId", vm.toString(i),
vm.toString(j))));
 }
 }
 }

© Coinspect 2024 63 / 70

FSC-18

Chilling bypassed by re-delegating voting
power

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

contracts/protocol/implementation/FlareSystemsCalculator.sol

contracts/protocol/implementation/VoterRegistry.sol

Description

Users can change the account they delegate to, effectively bypassing the chilling
process for upcoming epochs.

Governance can chill the delegation address of a voter for a specific number of
epochs. During this period, any voting power derived from their nodes or
delegations is nullified. For example, if a voter is chilled for 2 reward epochs at
epoch 3, they will be chilled until epoch 5. This means that starting from epoch 6,
they will recover their voting power.

 function chill(
 bytes20[] calldata _beneficiaryList,

© Coinspect 2024 64 / 70

 uint256 _noOfRewardEpochs
)
 external onlyGovernance
 returns(
 uint256 _untilRewardEpochId
)
 {
 uint256 currentRewardEpochId =
flareSystemsManager.getCurrentRewardEpochId();
 _untilRewardEpochId = currentRewardEpochId + _noOfRewardEpochs
+ 1;
 for(uint256 i = 0; i < _beneficiaryList.length; i++) {
 chilledUntilRewardEpochId[_beneficiaryList[i]] =
_untilRewardEpochId;
 emit BeneficiaryChilled(_beneficiaryList[i],
_untilRewardEpochId);
 }
 }

When registering a voter, calculateRegistrationWeight from the System
Calculator is called. This function accounts for the voter's weight, only if they are
not chilled for the current reward epoch:

 if (_rewardEpochId >=
voterRegistry.chilledUntilRewardEpochId(bytes20(delegationAddress))) {
 uint256 totalWNatVotePower =
wNat.totalVotePowerAt(_votePowerBlockNumber);
 uint256 wNatWeightCap = (totalWNatVotePower * wNatCapPPM) /
PPM_MAX; // no overflow possible
 wNatWeight = wNat.votePowerOfAt(delegationAddress,
_votePowerBlockNumber);
 wNatCappedWeight = Math.min(wNatWeightCap, wNatWeight);
 _registrationWeight += wNatCappedWeight;
 }

A voter can control three accounts: one holding the WNat balance (delegator),
another acting as the voter, and a third as the delegation address (delegated). If
the delegation address is chilled for a long period, the delegator may re-delegate
the WNat balance to a different delegation address registered for another voter,
all controlled by the same user, effectively bypassing the chilling penalty.

This issue is considered low-risk since the attacker must accumulate a significant
amount of tokens in the delegator account. Moreover, if they manage this attack,
there will be another 99 voters in the set that could outweigh any malicious vote
performed by this bad actor.

A voter can initially control three accounts. One holding the WNat balance
(delegator), another one acting as the voter and a last one which is the delegation
address (delegated). If that delegation address is chilled for a long time, then the
delegator re-delegates the WNat balance to a different delegation address

© Coinspect 2024 65 / 70

registered for a different voter (all controlled by the same user), effectively
bypassing the chilling penalty.

This issue is considered to have no-risk since the attacker has to accumulate a high
amount of tokens in the delegator account. Moreover, if they manage to make this
attack, there will be another 99 voters in the set that could outweigh any
malicious vote performed by this evil actor.

Additionally, in calculateRegistrationWeight, there are no requirements for
voters to have nodes registered. This calculation aggregates the voting power
derived from registered nodes and WNat delegations, allowing voters to receive
all their weight from WNat delegations without having any node registered.

Recommendation

Document that the chilling process should not be fully trusted in cases where one
voter has enough voting power without relying on third-party delegations.

Status

Acknowledged.

Although this issue is considered feasible, the Flare Team stated that there are no
plans to replace the WNat contract. Also, Flare considers that since re-delegation
usually takes time, this issue could only affect voting power from a chilled data
provider for a limited duration.

Proof of Concept

The scenario below shows an attacker who controls an account with WNat. From
that account, they delegate to the delegation address of a voter (also under their
control). When that voter's delegation address is chilled, for the next epochs they
revoke the WNat delegation and re-delegate to a new Sybil delegation address
they control. As a result, they manage to bypass being chilled by creating a new
pair of (SybilVoter, SybilDelegation).

Output

© Coinspect 2024 66 / 70

 Delegating to Voter's delegation address
0x8CCaea58b4062d79EDa8E9E14C3D46C7655E8482...
 Chilling Voter 0x4DAfB91f6682136032C004768837e60Bc099E52C...
 Calculating registration weight of Voter:
0x4DAfB91f6682136032C004768837e60Bc099E52C ...
 Registration weight for voter = 0

Re-delegating to SybilVoter's delegation address
0x9D8511BA640540f7706c6Cd58138C3aFbFFA8dC0...
 Calculating registration weight of SybilVoter:
0x1606a175DD34f6ee99424f8e220f22144D70A112 ...
 Registration weight for SybilVoter = 5372
 Error: The voting power is non zero
 Error: a == b not satisfied [uint]
 Left: 5372
 Right: 0

Test

 function testCoinspectBypassChillStatus() public {
 // The attacker controls an account that makes and revokes WNat
delegations
 // Then, creates multiple pairs of (Voter, DelegationAddress)
that rotates when
 // their voter is chilled. This attack does not require any
active node to work.
 //
 // At this point the attacker controls 1 + N * (2) accounts
where:
 // One account is the owner of WNat, used to delegate
 // N: The amount of sets of (voter, delegationAddress)

 bytes20[] memory nodeIds = new bytes20[](0);
 uint256[] memory nodeWeights = new uint256[](0);

 // Voter: address that is part of a signing policy
 // Delegation: address that receives the delegated voting
weight, assigned to the Voter
 address voter = makeAddr("voter");
 address delegationAddress = makeAddr("delegation");

 address sybilVoter = makeAddr("sybilVoter");
 address sybilDelegationAddress =
makeAddr("sybilDelegationAddress");

 uint24 rewardEpochId = 12345;
 uint256 votePowerBlockNumber = 1234567;

 // Simulate that the delegationAddress is chilled forever
 console.log("Delegating to Voter's delegation address %s...",
delegationAddress);
 vm.mockCall(
 address(calculator.voterRegistry()),

abi.encodeWithSelector(IVoterRegistry.chilledUntilRewardEpochId.selecto
r, bytes20(delegationAddress)),

© Coinspect 2024 67 / 70

 abi.encode(type(uint256).max - rewardEpochId)
);

 // MockCalls to Entity Manager
 // The votePowerBlock for rewardEpochId = 12345
 _mockCallsToPrepareWeightRegistrationCalculation(
 voter, delegationAddress, rewardEpochId,
votePowerBlockNumber, nodeIds, nodeWeights
);

 // Check the voter's weight
 console.log("Chilling Voter %s...", voter);

 console.log("Calculating registration weight of Voter: %s ...",
voter);

 vm.prank(address(calculatorNoMirroring.voterRegistry()));
 uint256 registrationWeight =
calculator.calculateRegistrationWeight(voter, rewardEpochId,
votePowerBlockNumber);

 assertEq(registrationWeight, 0); // the voter was chilled
 console.log("Registration weight for voter = %s",
registrationWeight);

 // Then, for the next epochs the attacker activates a new set
of (SybilVoter, SybilDelegation)
 // and revokes the delegations from made to the
DelegationAddress from the previous epochs.
 rewardEpochId = rewardEpochId + 2;
 votePowerBlockNumber = votePowerBlockNumber + 100;

 // Simulate that the SybilDelegation not chilled
 console.log("\nRe-delegating to SybilVoter's delegation address
%s...", sybilDelegationAddress);

 vm.mockCall(
 address(calculator.voterRegistry()),

abi.encodeWithSelector(IVoterRegistry.chilledUntilRewardEpochId.selecto
r, bytes20(sybilDelegationAddress)),
 abi.encode(0)
);

 // The votePowerBlock + 100 for rewardEpochId = 12345 + 2
 _mockCallsToPrepareWeightRegistrationCalculation(
 sybilVoter, sybilDelegationAddress, rewardEpochId,
votePowerBlockNumber, nodeIds, nodeWeights
);

 // Check the new voter's weight
 console.log("Calculating registration weight of SybilVoter: %s
...", sybilVoter);

 vm.prank(address(calculatorNoMirroring.voterRegistry()));
 registrationWeight =
calculator.calculateRegistrationWeight(sybilVoter, rewardEpochId,
votePowerBlockNumber);
 console.log("Registration weight for SybilVoter = %s",
registrationWeight);

© Coinspect 2024 68 / 70

 assertEq(registrationWeight, 0, "The voting power is non
zero");
 }

With _mockCallsToPrepareWeightRegistrationCalculation():

 function _mockCallsToPrepareWeightRegistrationCalculation(
 address _voter,
 address _delegation,
 uint256 _rwEpochId,
 uint256 _votePowerBlockNumber,
 bytes20[] memory nodeIds,
 uint256[] memory nodeWeights
) internal {
 vm.mockCall(
 address(calculator.entityManager()),

abi.encodeWithSelector(IEntityManager.getNodeIdsOfAt.selector, _voter,
_votePowerBlockNumber),
 abi.encode(nodeIds)
);

 vm.mockCall(
 address(calculator.pChainStakeMirror()),
 abi.encodeWithSelector(

bytes4(keccak256("batchVotePowerOfAt(bytes20[],uint256)")), nodeIds,
_votePowerBlockNumber
),
 abi.encode(nodeWeights)
);

 vm.mockCall(
 address(calculator.entityManager()),

abi.encodeWithSelector(IEntityManager.getDelegationAddressOfAt.selector
, _voter, _votePowerBlockNumber),
 abi.encode(_delegation)
);

 vm.mockCall(
 address(calculator.wNat()),

abi.encodeWithSelector(bytes4(keccak256("totalVotePowerAt(uint256)")),
_votePowerBlockNumber),
 abi.encode(TOTAL_WNAT_VOTE_POWER)
);

 vm.mockCall(
 address(calculator.wNat()),
 abi.encodeWithSelector(
 bytes4(keccak256("votePowerOfAt(address,uint256)")),
_delegation, _votePowerBlockNumber
),
 abi.encode(WNAT_WEIGHT)
);

© Coinspect 2024 69 / 70

 vm.mockCall(
 address(calculator.wNatDelegationFee()),

abi.encodeWithSelector(IWNatDelegationFee.getVoterFeePercentage.selecto
r, _voter, _rwEpochId),
 abi.encode(DELEGATION_FEE_BIPS)
);
 }

© Coinspect 2024 70 / 70

6. Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover any on-chain systems or frontends that
communicate with the network, nor the general operational security of the organization
that developed the code.

