
Flare
Hybrid Band Reward &

Distribution Update 
Smart Contract Audit



Flare

Smart Contract Audit
V230220 Prepared for Flare • February 2023

1. Executive Summary

2. Assessment and Scope

Fixes review

3. Summary of Findings

4. Detailed Findings

FLR-32 Attackers can make executors waste money

FLR-33 Insecure random in finalizePriceEpoch random

FLR-34 Denial of service by preventing good random values

5. Disclaimer

© 2023 Coinspect 1



1. Executive Summary

In January 2023, Flare engaged Coinspect to perform a source code review of
changes to the Flare platform. These included modification to the reward band
system for price providers, scaffolding for a new random generation system and
optimization of the rewards distribution. The objective of the project was to
evaluate the security of the smart contracts involved in these changes.

The following issues were identified during the initial assessment:

High Risk Medium Risk Low Risk

Open

0
Open

0
Open

0
Fixed

0
Fixed

0
Fixed

2

Reported

0
Reported

0
Reported

3

Coinspect identified three low-risk issues. Although one of them (FLR-32) can
involve monetary losses we decided to reduce its risk based on our analysis of the
probabilities (Likelihood).

A brief summary of findings:
● Issue FLR-32 describes how an attacker would put funds of an executor at

risk (possible business impact but with very low likelihood).
● Issue FLR-33 describes how one particular part of the system was not ready

for new random generation.
● Issue FLR-34 describes how smart contacts’ availability could be impacted if

the service does not give a good random number.

© 2023 Coinspect 2

https://www.coinspect.com


After the audit, Flare fixed both FLR-33 and FLR-34. FLR-32 was acknowledged
but Flare stated it is the responsibility of the executors to avoid being impacted by
it.

© 2023 Coinspect 3



2. Assessment and Scope

The audit started on January 23 and was conducted on the flare_distribution_audit
branch of the git repository at https://gitlab.com/flarenetwork/flare-smart-contracts
as of commit eb44f6f10da003cb11692cf0c0b953feedb51e10 of January 23.

The audited files have the following sha256sum hash:
0a28649a98dd50c7eb9a347c6338a7c327883a544a4ddfdc713fb2f290e779b1 addressUpdater/implementation/AddressUpdater.sol

da08716ba1759e15755a890231989b7ed39b6de4eba51dba4e9b735c590b72d3 ftso/implementation/Ftso.sol

b7a9b1367ff17cc4bb42add954e084ff8f0615388a4dfcc6a1981a637a9eaa1d ftso/implementation/FtsoManager.sol

5920d663ec76ee4486d88a8469698a10770e45b0f2b2de8ff306fd535f467122 ftso/lib/FtsoEpoch.sol

1c9f26687df89ce5e8126ad4163a7d0bf09cbef54f65bb0fb1a11ae38d2cd0d9 ftso/lib/FtsoManagement.sol

a44e7e7687de98e87355d51bccc09b813870ebe4fe1cfc9fde42be8152d09b71 ftso/lib/FtsoManagerSettings.sol

a89c462c2280ee1d6dac09e19ef52562f12d30f3771818da1ec5f0cd82ec9857 genesis/implementation/DistributionTreasury.sol

9b6f37d5709788c7f540deff9089b211085d266ea4bb88ad3bed4d7bc38c6656 genesis/implementation/InitialAirdrop.sol

cf373bd09d934acbf6ac6da723d684186b5368f459229c02855fecfd2d8f6440 tokenPools/implementation/DistributionToDelegators.sol

613d0a23161aa024617b18ecac1360554a0e9f7788106900db20537705b06a5c utils/implementation/ValidatorRegistry.sol

Additionally the branch 699-update-voterwhitelister was audited, containing the
file with the following hash:

50d9ee16f8ef312ee5babb7ae6a3f43d0cef003296c0a125e1651bf3b980a8e3 VoterWhitelister.sol

For both branches, the focus of the audit was the differences with respect to the
master branch of the repository.

The flare_distribution_audit branch introduces a few changes:

1. The addition of the Hybrid Band Reward: a new method for calculating the
FTSO reward which attempts to discourage collusion.

2. Preparations to add a new random generation scheme, but said system is not
yet in place.

3. Optimizations to the distribution to delegators: updating it to reflect the
recent changes to the daemonize flow and the ClaimSetupManager.

The new hybrid band reward system adds a weight to those price providers that are
close enough to the median value independently of the whole distribution of votes.
This allows price submitters to have a guaranteed reward when voting near the
expected value, without being affected by other price providers.

© 2023 Coinspect 4

https://gitlab.com/flarenetwork/flare-smart-contracts


A new random scheme is toggled with a quality random flag. It was described by
the team to be a commit and reveal scheme, where if any submitter fails to reveal,
the good random flag will be turned off. This prevents submitters from commiting
and not revealing values, a random manipulation strategy that could be performed
with the current system.

On the other hand, the 699-update-voterwhitelister branch adds logic to the
VoterWhitelister contract, which now implements a temporary ban on voters.
The governance has the possibility of disabling voting for specific addresses during
a number of rewards specified on a case by case basis. This is performed by calling
the chillVoter method.

When the VoterWhitelister is now updated, the new version of the contract will
start on a copyMode state. This is a state that can be permanently disabled by the
Immediate Governance and will prevent any voting during this state. The purpose is
to copy the whitelisted price providers from the old VoterWhitelister contract.
The copyWhitelist is restricted to the Immediate Governance. This restriction is
probably unnecessary because the data can only be copied from the previous
contract and not submitted by anyone.

Coinspect found no major issues with the changes presented. The code is
well-tested and well documented, both with comments on the contracts and with
external documentation which was provided by Flare.

Fixes review

On February 16th, 2023 a fix review was conducted on the the
flare_distribution_audit branch of the git repository at
https://gitlab.com/flarenetwork/flare-smart-contracts. The commits are included in
the Merge Request 602.

The commits include fixes and a minor amount of changes. Coinspect found the
fixes correctly mitigate bugs that were discussed with Flare and that the changes
did not introduce any additional risk.

© 2023 Coinspect 5

https://gitlab.com/flarenetwork/flare-smart-contracts
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/602


The commits reviewed were:

● e07849d9120a6c48d3f15321715ad2029ff2093a

● fe8c5c38c7952cf53a57c331a74fdb992d514aba

● cc0130e9b23f5d8f2b3a44ff25f4ff92109095f4

● 33744000b4a7e57cd668175ff1f5d2c53431e226

● 31b45497b509fd083f3951a75f22293a53950e89

● 85cd38a7d10dc8434644747b10691ffcbfb61446

● 765aa940411a524d89fe5bfaf10c4f995a9213b7

● bb57dc77bfc4533787ef3dc1d3a32bf4a9620e3a

● 6b463b7e65930c4aca3fd745df11fa136ce97d63

The commit e07849d9120a6c48d3f15321715ad2029ff2093a moves bulk
operations to the new contract registry contract.

Commit fe8c5c38c7952cf53a57c331a74fdb992d514aba adds new interfaces and
adapts AddressUpdater so it conforms to IIAddressUpdater. On that same
commit, a Flare contract registry was created which provides external view
functions querying the addresses stored in AddressUpdater.

The commit cc0130e9b23f5d8f2b3a44ff25f4ff92109095f4 adds an external
view function to the AddressUpdater allowing to get an address by providing a
name hash.

The commit 33744000b4a7e57cd668175ff1f5d2c53431e226 increases the number
of epochs where an old reward manager could be used and restricts delegators
from performing a claim multiple times.

On the commit 31b45497b509fd083f3951a75f22293a53950e89 the treasury was
modified and now it only supports one distribution contract at a time. Two changes
were made to DistributionToDelegators: it is possible to set an entitlement start
time two weeks in the past to comply with publicly committed dates and the whole
system is now stoppable in case of an emergency. Also, the older Distribution
contract was removed and some constant values were modified to fit better with
Flare’s deployment and administration plans.

Commit 85cd38a7d10dc8434644747b10691ffcbfb61446 indirectly removes a retry
logic that was active for updating the power blocks and rewards. Now, when
daemonize() commits to some power blocks and distributable amounts, it will not

© 2023 Coinspect 6



ever change those values. This makes potential issues in the update of distributable
amount more serious; as now if for some reason the treasury has no funds when
calling daemonize() for the first time in a month, the rewards for that month will be
zero permanently. This change also invalidates a bug where some users could get
their rewards stuck when these values were updated by making that update
impossible.

Commit 765aa940411a524d89fe5bfaf10c4f995a9213b7 modifies deployment
scripts adding a redeployment mechanism. Some configurations were also changed,
including the governance time lock which is now one hour.

The commit bb57dc77bfc4533787ef3dc1d3a32bf4a9620e3a fixes FLR-34 by
adding a timeout when waiting for good randoms on FtsoManager.sol.

Commit 6b463b7e65930c4aca3fd745df11fa136ce97d63 does the same for
DistributionForDelegators.sol and makes ownerNextClaimableMonth

increase monotonically, fixing an issue found by the Flare team.

© 2023 Coinspect 7



3. Summary of Findings

Id Title Total Risk Fixed

FLR-32 Attackers can make executors waste money Low !

FLR-33 Insecure random in finalizePriceEpoch
random

Low ✔

FLR-34 Denial of service by preventing good random
values

Low ✔

- ✔ The issue has been solved.
- ! The issue does not require immediate action but developers and users

must exercise caution.
- ✘ The issue has not been addressed.

© 2023 Coinspect 8



4. Detailed Findings

FLR-32 Attackers can make executors waste money

Total Risk

Low

Impact
Medium

Location
contracts/tokenPools/implementation/DistributionToDel
egators.sol

Fixed
!

Likelihood
Low

Description

Attackers can make an executor waste resources by setting an evil _receiver.

Executors can call the claim method to claim rewards for their clients. Importantly,
the client is able to set any _recipient address via the setAllowedClaimRecipients
method.

If an executor calls the claim method with a recipient address provided by an attacker
and _wrap set to false; the contract will make a call to the _recipient address. This
_recipient address can contain logic that makes the executor waste all their gas.

DistributionToDelegators.sol
491: } else {
492: (bool success, ) = _recipient.call{value: _rewardAmount}("");
493: /* solhint-enable avoid-low-level-calls */
494: require(success, ERR_CLAIM_FAILED);
495: }

The problem is exacerbated if the executor contains off-chain logic that retries
transactions that fail or if they set a high gas limit on their transactions. Both are
common practices in automated systems that make transactions.

Recommendation

If executors are not supposed to call _claim, disallow them to do so.

In addition, it is encouraged that all calls to external contracts set a gas limit and use
Nomad’s Excessively Safe Call to prevent any kind of griefing.

© 2023 Coinspect 9

https://github.com/nomad-xyz/ExcessivelySafeCall


Status

Flare has acknowledged the issue and stated that it’s the responsibility of executors to
avoid claiming for evil receivers.

© 2023 Coinspect 10



FLR-33 Insecure random in finalizePriceEpoch random

Total Risk

Low

Impact
Low

Location
contracts/ftso/implementation/FtsoManager.sol

Fixed
✔

Likelihood
Low

Description

Random used for finalizePriceEpoch can still be manipulated.

The finalizePriceEpoch function in the FTSOManager uses the old random instead
of the new getCurrentRandomWithQuality function.

The getCurrentRandom method may fail to provide a good random value and may
also not be available in the new implementation.

Recommendation

Add support for the getCurrentRandomWithQuality function.

Status

Fixed at commit eb44f6f10da003cb11692cf0c0b953feedb51e10 by following the
recommendation.

© 2023 Coinspect 11



FLR-34 Denial of service by preventing good random values

Total Risk

Low

Impact
Low

Location
contracts/ftso/implementation/FtsoManager.sol

Fixed
✔

Likelihood
Low

Description

The platform will become inoperational if the getCurrentRandomWithQuality

method continually fails to return the goodRandom flag.

The getCurrentRandomWithQuality method provides a good random boolean flag. If
this method returns false permanently, _finalizeRewardEpoch and
_updateVotePowerBlocksAndWeight functions will stop working

This dismisses guarantees of well behaved providers receiving rewards.

Recommendation

Reward owners should be guaranteed to receive their rewards. Implement an
escape-hatch system that allows owners to bypass the good random requirement if
the system has not received a good random after a certain, long, amount of time.

Status

The issue has been fixed in commits 6b463b7e65930c4aca3fd745df11fa136ce97d63
and bb57dc77bfc4533787ef3dc1d3a32bf4a9620e3a by introducing a timeout for the
wait of good random numbers.

© 2023 Coinspect 12



5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2023 Coinspect 13


