
Flare Network
Smart Contract Audit

Flare TDE Updates

Smart Contract Audit
V221223 Prepared for Flare • December 2022

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

FLR-26 Multiple fee payments for previously set executors

FLR-27 Governance implementation takeover

FLR-28 Non standard tokens can get locked in DelegationAccount contracts

FLR-29 Withdrawal events manipulation with reentrancy

FLR-30 Assert misusage

FLR-31 ProxyGoverned storage layout lacks safety gap

5. Disclaimer

© 2022 Coinspect 1

1. Executive Summary

In December 2022, Flare engaged Coinspect to perform a source code review of a
set of modifications performed to the Flare Network smart contracts. The objective
of the project was to evaluate the set of contracts that will be used for the Token
Distribution Event (TDE).

The new features allow account delegations and include changes related to the
handling of reward management and distribution. Also, an execution (relay) logic
was added to enable trusted third parties to perform actions on behalf of other
accounts. It is worth observing that users must trust these third parties to execute
claims on their behalf as expected as the smart contracts reviewed do not
guarantee or enforce this. As a result, user’s rewards could be lost if not claimed by
the executor as expected.

The following issues were identified during the initial assessment:

High Risk Medium Risk Low Risk

Open

0
Open

0
Open

0
Fixed

0
Fixed

0
Fixed

5

Reported

0
Reported

0
Reported

5

Coinspect identified five low-risk issues and one informational issue. FLR-26 shows
how users are forced to pay executors fees multiple times. FLR-27 illustrates how
the implementation of the governance contract could be taken over. FLR-28 shows
how non standard tokens would remain locked inside the delegation accounts.
FLR-29 describes how users could manipulate withdrawal events emissions via
reentrancy. FLR-30 suggests using require instead of assert to check for valid

© 2022 Coinspect 2

https://www.coinspect.com

conditions that cannot be detected until execution time. The informational issue
FLR-31 recommends implementing a storage gap to prevent proxy collisions.

© 2022 Coinspect 3

2. Assessment and Scope
The audit started on December 12, 2022 and was conducted on the
flare_code_to_audit branch of the git repository at
https://gitlab.com/flarenetwork/flare-smart-contracts as of commit
03678e8f47eae988c654ef6858dcf14d06a31476 of December 20, 2022.

The main audited files have the following sha256sum hash:

7a66633326deb8df12f142e70abdd68dc57b08ee3128522b340024fbbc99774b ClaimSetupManager.sol

f98370c7a4369a58986bea2486d0a13bea663524ba2ce003cd2f6ff25b7692eb FtsoRewardManager.sol

dbe4e5c99777121679d0e67874a091f97538e1a85754016519da22d5d928a56a ProxyGoverned.sol

8c7b0380d29c6ab5b45c3ff3e649cf03907b4ad07d5f2d323ae5ef3568a71ac1 FtsoRegistryProxy.sol

9966a2c8b3a02c75d13cf5423da738680ca86119f5d1be64447f47d8cc2d68b9 FlareAssetRegistry.sol

6bebbd18048a59670355034ea1276484a74b567f8cef595a428c07ed5131b04c WNatRegistryProvider.sol

7bec42cfc55bc0db68f612907ff870d21e20c52710db16f1ea0c5b8813a262d9 FtsoRegistry.sol

149edc2a2d7d4f925bf4ea3df0766f14658ea29b9a2535772d9ccab78325534c FtsoManager.sol

bee8e445edb09961149fe28a2290152f185e9e6f143d673a260acfebf36dc1f4 Ftso.sol

This audit focused on the changes introduced to the smart contract by the following
merge requests:

● https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/579
● https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581
● https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/583

Overall the code quality was high, changes were well documented and easy to
understand. However, Coinspect identified that assert was used instead of require
on places that could revert under expected operative scenarios, instead of code or
invariant errors (FLR-30).

The main change introduced is a new flow for claiming FTSO rewards, where a
token holder can claim rewards through a third party executor using the new
ClaimSetupManager contract. Each user can create a delegation account that
handles token transfers and voting power delegation. Coinspect observed how non
standard tokens could remain locked inside the delegation accounts as boolean
returns were expected (FLR-28).

The reward system is epoch based meaning that the granularity of the calculation
depends on the epoch length. Rewards for a user can be self-claimed or claimed by
a trusted executor (claim relayer). Moreover, the same behavior occurs for FTSO

© 2022 Coinspect 4

https://gitlab.com/flarenetwork/flare-smart-contracts
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/579
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/583/

providers where they can designate an executor. Receivers can also enable an auto
claim for a specified list of epochs which will be handled by previously set
executors.

The reward manager allows an inlet of tokens coming from the inflation manager
that will be later assigned as the distributed rewards. Also, unclaimed rewards for
past epochs will be also burned while injecting rewards via inflation. Once the
rewards are accounted for and assigned to a user, they could be either transferred
as wrapped tokens or directly as native to the receiver. The rewarding contract
implements a modifier that ensures rewards balance which is checked before
performing any claim. In addition, the rewarding manager contract has the privilege
to set and modify key parameters.

Users can enable delegation accounts through ClaimSetupManager. Executors can
register in this manager and later be set by users to perform relayed rewards
claimings. Executors set a relaying fee upon registration (which can be later
updated) and users have to pay that fee when assigning an executor. The fee
cannot be changed for the current epoch and has an offset (cooldown) on which it
can be changed to prevent frontrunning attacks. Moreover, the execution fees have
upper and lower boundaries enforced by the contract to prevent outstanding
charges. Delegation accounts are also managed by this contract allowing owners of
those accounts to handle the rewards previously claimed. The rewarding system
relies on the onlyOwnerOrExecutor modifier to control actions that can only be
performed by the owner or a previously set executor. Coinspect identified that users
cannot set newer executors without having to pay again the fee to previously set
executors (FLR-26).

It is worth mentioning that users pay executors upon assignment instead of once
they perform the relayed call. Those who decide to pay an executor, must know
that there’s nothing stopping them from not relaying their rewards claiming calls.
As a result, user’s rewards would be lost if not claimed by the executor as expected.

The FTSO’s are registered under the FTSORegistry contract which is upgradable
and allows the manager to add and remove oracles. Moreover, prices could be
retrieved via its implementation. This contract is deployed behind a proxy
(FTSORegistryProxy) which is a governed custom proxy contract. Coinspect found

© 2022 Coinspect 5

that the implementation of the base contract’s Governance was prone to a
take-over because it allowed a public initialization (FLR-27). Also, related to the
withdrawal process, FLR-29 shows how events could be manipulated with
reentrancy.

The ProxyGoverned is a proxy contract inherited by the FtsoRegistryProxy

contract. This proxy (and its childs, e.g. Governed) have several functions that are
access controlled. Any call to an access controlled function made by a non
privileged account will fail instead of being forwarded. The Transparent Proxy
Pattern suggests to forward any call coming from a non privileged account, instead
of triggering a reversal. There are several functions controlled by the
onlyGovernance modifier that will not be forwarded and will revert. Following the
mentioned pattern is an alternative to prevent this. For the storage layout, both the
proxy and the implementation inherit from the GovernedBase contract. This allows
the implementation to use the same governance set in the proxy and manage all
governance from the same place. But this also fixes the GovernedBase account,
making this part of the code really hard to update in the future. Also, Coinspect
recommended using a storage gap to prevent collisions (FLR-31).

© 2022 Coinspect 6

https://blog.openzeppelin.com/the-transparent-proxy-pattern/
https://blog.openzeppelin.com/the-transparent-proxy-pattern/

3. Summary of Findings

Id Title Total Risk Fixed

FLR-26 Multiple fee payments for previously set
executors

Low ✔

FLR-27 Governance implementation takeover Low ✔

FLR-28 Non standard tokens can get locked in
DelegationAccount contracts

Low ✔

FLR-29 Withdrawal events manipulation with
reentrancy

Low ✔

FLR-30 Assert misusage Low ✔

FLR-31 ProxyGoverned storage layout lacks safety
gap

Info !

© 2022 Coinspect 7

4. Detailed Findings

FLR-26 Multiple fee payments for previously set executors

Total Risk

Low

Impact
Low

Location
ClaimSetupManager.sol

Fixed
✔

Likelihood
Low

Description

Users pay the executors their fee upon assignment. Because the setting mechanism
replaces all the already set executors, users are forced to re-pay the executorFee to
previously set executors even if they want to manage only one of them.

The _setClaimExecutors implementation only admits passing a list of executors,
replacing previous registrations:

function _setClaimExecutors(address[] memory _executors) internal {
// replace executors
ownerClaimExecutorSet[msg.sender].replaceAll(_executors);
emit ClaimExecutorsChanged(msg.sender, _executors);
uint256 totalExecutorsFee = 0;
for (uint256 i = 0 ; i < _executors.length; i++) {

uint256 executorFee = getExecutorCurrentFeeValue(_executors[i]);
if (executorFee > 0) {

totalExecutorsFee += executorFee;
/* solhint-disable avoid-low-level-calls */
//slither-disable-next-line arbitrary-send-eth
(bool success,) = _executors[i].call{value: executorFee}(""); //nonReentrant
/* solhint-enable avoid-low-level-calls */
require(success, ERR_TRANSFER_FAILURE);

}
}

// THE FUNCTION CONTINUES HERE …
}

Users cannot modify or add just one executor to relay their reward claims and are
forced to pass again the whole list of executors, paying them the fee:

© 2022 Coinspect 8

1) Alice adds a list of executors: [addr(1), addr(2), addr(3)]

2) Then she decides to add the executor addr(4).
3) Alice is forced to pass the following array, paying again to the first three

executors: [addr(1), addr(2), addr(3), addr(4)]

As a result, Alice paid twice to the first three executors in order to add a fourth one.

Recommendation

Allow users to add and remove single executors.

Status

Fixed.

Executors are now only paid the first time they are registered, in commit
cd10aac03a3e7f8f235a9e7941dac197f97ad46f (merge request !581).

© 2022 Coinspect 9

https://gitlab.com/flarenetwork/flare-smart-contracts/-/commit/cd10aac03a3e7f8f235a9e7941dac197f97ad46f
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/commits?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570#2140d490a5e9291b588637d29fc27d75d8ea2f58

FLR-27 Governance implementation takeover

Total Risk

Low

Impact
Low

Location
FTSORegistry.sol

Fixed
✔

Likelihood
Medium

Description

The FTSORegistry contract inherits GovernedBase and uses the address(0) as a
deployment parameter. As a consequence, the governance implementation contract
will remain uninitialized allowing anyone to proceed with its initialization passing a
custom governance contract.

The registry contract has the following constructor:

constructor() GovernedBase(address(0)) AddressUpdatable(address(0)) {
/* empty block */

}

Moreover, the GovernedBase contract has the following deployment and initialization
logic:

constructor(address _initialGovernance) {
if (_initialGovernance != address(0)) {

initialise(_initialGovernance);
}

}

function initialise(address _initialGovernance) public virtual {
require(initialised == false, "initialised != false");
initialised = true;
initialGovernance = _initialGovernance;
emit GovernanceInitialised(_initialGovernance);

}

© 2022 Coinspect 10

The governance contracts will point to the same address once they are switched to
production mode via BaseGovernance.switchToProductionMode(), changing the
retrieved governance address:

function governance() public view returns (address) {
return productionMode ? governanceSettings.getGovernanceAddress() :

initialGovernance;
}

Although the governance contracts will point to the same address while in production
mode, depending on how the retrieved governance address is used by the caller
while on initial stages uncertain scenarios may arise.

Recommendation

Initialize the base governance contract with a known address.

Status

Fixed.

The deployment now initializes the implementation with the dead address:

constructor() GovernedBase(DEAD_ADDRESS) AddressUpdatable(address(0)) {
/* empty block */

}

Fix located in commit ​​051ef3241af5f7f879b91b4f175f27947f1e1570 (merge
request !581).

© 2022 Coinspect 11

https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/diffs?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/commits?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570#2140d490a5e9291b588637d29fc27d75d8ea2f58
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/commits?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570#2140d490a5e9291b588637d29fc27d75d8ea2f58

FLR-28 Non standard tokens can get locked in DelegationAccount contracts

Total Risk

Low

Impact
Low

Location
DelegationAccount.sol

Fixed
✔

Likelihood
Low

Description

Non standard ERC tokens that do not have a boolean return will remain locked inside
the DelegationAccount contract.

The delegation accounts handle token transfer with the following function:

function transferExternalToken(WNat _wNat, IERC20 _token, uint256 _amount)
external override onlyManager {

require(address(_token) != address(_wNat), "Transfer from wNat not
allowed");

bool success = _token.transfer(owner, _amount);
require(success, ERR_TRANSFER_FAILURE);
emit ExternalTokenTransferred(_token, _amount);

}

In the event of receiving ERC tokens that do not return a boolean value on transfer
(such as BNB and USDT in other chains), the require statement checking the state of
the transfer will never be true, reverting the external token transfer.

Recommendation

Use a safe transfer library when performing transfers of arbitrary tokens.

Status

Fixed.

© 2022 Coinspect 12

Arbitrary tokens are now handled with safeTransfer in commit
​​051ef3241af5f7f879b91b4f175f27947f1e1570 (merge request !581).

© 2022 Coinspect 13

https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/diffs?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/commits?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570#2140d490a5e9291b588637d29fc27d75d8ea2f58

FLR-29 Withdrawal events manipulation with reentrancy

Total Risk

Low

Impact
Low

Location
DelegationAccount.sol

Fixed
✔

Likelihood
Low

Description

The withdrawal methods for both native and ERC tokens emit an event after
performing the transfer. As a result, users could reenter the withdrawal method and
the event emitted will only account the amount for a single call.

function withdraw(WNat _wNat, uint256 _amount) external override onlyManager {
bool success = _wNat.transfer(owner, _amount);
require(success, ERR_TRANSFER_FAILURE);
emit WithdrawToOwner(_amount);

}

function transferExternalToken(WNat _wNat, IERC20 _token, uint256 _amount)
external override onlyManager {

require(address(_token) != address(_wNat), "Transfer from wNat not allowed");
bool success = _token.transfer(owner, _amount);
require(success, ERR_TRANSFER_FAILURE);
emit ExternalTokenTransferred(_token, _amount);

}

Users cannot interact with the mentioned functions directly. They first need to create
one via ClaimSetupManager.enableDelegationAccount() or
ClaimSetupManager.setAutoClaiming(). Both calls end up executing the internal
_getOrCreateDelegationAccountData() function that clones a Delegation Account
and initializes its owner as the msg.sender.

Once the delegation account for the owner is deployed, it can be managed via the
ClaimSetupManager contract:

function withdraw(uint256 _amount) external override {
_getDelegationAccount(msg.sender).withdraw(wNat, _amount);

}

© 2022 Coinspect 14

function transferExternalToken(IERC20 _token, uint256 _amount) external override {
_getDelegationAccount(msg.sender).transferExternalToken(wNat, _token,

_amount);
}

The owner of the delegation account can be a contract that:
1) Has 10 HTokens (ERC777 hookable tokens) in the Delegation Contract

(Contract D).
2) Calls claimSetupManager.transferExternalToken(1 Ntoken)
3) Via the token hook logic made in the owner contract, reenters again with step 2)
4) As long as there is token balance in the delegation account contract, the step 3)

is repeated.
5) The event emitted would be: ExternalTokenTransferred(HToken, 1 token)

where the owner transferred 10 tokens instead.

Recommendation

Emit the event before making the transfer.

Status

Fixed.

In commit ​​051ef3241af5f7f879b91b4f175f27947f1e1570 (merge request !581).

The event is now emitted before performing the transfer. Also, the nonReentrant

modifier in ClaimSetupManager.transferExternalToken() was added.

© 2022 Coinspect 15

https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/diffs?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/commits?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570#2140d490a5e9291b588637d29fc27d75d8ea2f58

FLR-30 Assert misusage

Total Risk

Low

Impact
Low

Location
FtsoRewardManager.sol

Fixed
✔

Likelihood
Low

Description

The require statement does not use up the remaining gas whereas the assert

statement wasting all the remaining gas sent for the call. Several locations of the
project use the assert statement to handle errors that could happen because of
several operative situations (for example, if a non privileged account calls a function).
As a result, an error of type Panic(uint256) is triggered instead of an error type
Error.

The Solidity documentation states:

“The assert function should only be used to test for internal errors, and to check
invariants. If this happens there is a bug in your contract which you should fix.

The require function should be used to ensure valid conditions that cannot be
detected until execution time. This includes conditions on inputs or return values from
calls to external contracts.”

For example, in the FtsoRewardManager contract:

function _checkExecutorAndAllowedRecipient(address _rewardOwner, address _recipient) private
view {

if (msg.sender == _rewardOwner) {
return;

}
assert(claimSetupManager.checkExecutorAndAllowedRecipient(msg.sender, _rewardOwner,

_recipient));
}

It is a possible (yet not a code bug) scenario for a user to trigger a claim without being
the owner or executor.

© 2022 Coinspect 16

https://docs.soliditylang.org/en/v0.7.6/control-structures.html#id4

Recommendation

Replace assert for require in any other place where it applies, according to the
Solidity Docs.

Status

Fixed.

In commit ​​051ef3241af5f7f879b91b4f175f27947f1e1570 (merge request !581).

Now ClaimSetupManager.checkExecutorAndAllowedRecipient() does not return
a boolean value and the assert was removed from
FtsoRewardManager._checkExecutorAndAllowedRecipient() relying on the
require statements located in checkExecutorAndAllowedRecipient().

© 2022 Coinspect 17

https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/diffs?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/581/commits?commit_id=051ef3241af5f7f879b91b4f175f27947f1e1570#2140d490a5e9291b588637d29fc27d75d8ea2f58

FLR-31 ProxyGoverned storage layout lacks safety gap

Total Risk

Info

Impact
-

Location
ProxyGoverned.sol

Fixed
!

Likelihood
-

Description

An upgrade of the ProxyGoverned contract that does not take into account the
previously established storage layout might corrupt data breaking the proxy and
leading to uncertain scenarios.

The ProxyGoverned contract inherits from Governed (thus GovernedBase) their
variables and consequently the storage layout. The implementation’s layout should
match the proxy’s appending new variables to the end of the layout. Moreover, a
storage gap is commonly suggested to prevent the impact mentioned before.

Recommendation

Implement a safety storage gap to prevent storage collisions. Append newer variables
to the end of the layout while updating the implementation.

Status

Won’t fix.

The Flare Team stated that they are not willing to upgrade that contract: “We think we
should leave the code as is. FtsoRegistryProxy contract will never change (that’s
why we need proxy in this case) and the FtsoRegistry uses the storage variables
from GovernedBase anyway, so we cannot just change the storage layout when we
redeploy. So we think there shouldn’t be any need for the storage gap.”

© 2022 Coinspect 18

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 19

© 2022 Coinspect 20

