
Flare Network
Smart Contract Audit

Flare Airdrop Update

Smart Contract Audit
V221109 Prepared for Flare • November 2022

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

FLR-23 Failed transfers funds’ will be irreversibly locked in InitialAirdrop

FLR-24 Accounting mismatch on failed transfers

FLR-25 Airdrop contract can not be funded with native transfers

5. Disclaimer

© 2022 Coinspect 1

1. Executive Summary

In October 2022, Flare engaged Coinspect to perform a source code review of an
update to the initial airdrop smart contract to be used during the TDE of the Flare
Network. The objective of the project was to evaluate the security of the smart
contract modifications.

The following issues were identified during the initial assessment:

High Risk Medium Risk Low Risk

Open

0
Open

0
Open

0
Fixed

0
Fixed

1
Fixed

1

Reported

0
Reported

1
Reported

1

Coinspect found one medium risk issue related to failed airdrop transfers resulting
in these funds being locked in the contract. A low risk issue is reported as well,
related to the incorrect accounting of failed airdrop transfers.

The new functionality added to the initial airdrop contract sends funds to a
distribution account in some scenarios. The redistribution of those funds to the
originally intended addresses was not in scope for this audit.

© 2022 Coinspect 2

https://www.coinspect.com

2. Assessment and Scope
The audit started on October 27, 2022 and was conducted on the
initial_airdrop_update branch of the git repository at
https://gitlab.com/flarenetwork/flare-smart-contracts as of commit
bab470c18fe01cd6228f029c1b3aa139630839b6 of October 25, 2022.

The audited files have the following sha256sum hash:
51e8b658586b46b61ee50ad76aac0087abb6dc4b9ab7039df1f4bb51d3fd4d36

genesis/implementation/InitialAirdrop.sol

eeb90a716cbbc317f02c9a80c188d2543d33a25f4f210317bb28efe1f436722a utils/implementation/AddressSet.sol

This audit focused on the changes introduced by the following merge request to the
smart contracts:

● https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/551

The InitialAirdrop contract manages how the tokens will be distributed on
different airdrop stages. The actions performed by this contract are mainly
governance-controlled by the onlyGovernance modifier.

These are the new changes introduced in this update:
1) The Initial Airdrop contract does not inherit from GovernedAtGenesis

anymore. Instead, Governed is now used.
2) A new removeAirdropAccount function was added. Which allows the

governance to send funds to certain accounts before the token distribution
event (TDE) and rearranges the airdropAccounts array.

The newly added removeAirdropAccount accepts a flag to determine if the funds
are sent back to a distribution account or directly to the removed account. The
previously reviewed code releases did not have that functionality. This is meant to
be used to fund exchanges before the airdrop begins so they can support the
market once the airdrop takes place. Besides that, the exact handling of the funds
destined to the distribution account is uncertain. Coinspect did not review during
this audit the process that should redistribute those funds sent from the
InitialAirdrop contract to the distribution account back to their intended
owners.

© 2022 Coinspect 3

https://gitlab.com/flarenetwork/flare-smart-contracts
https://gitlab.com/flarenetwork/flare-smart-contracts/-/merge_requests/551

Also, the external transferAirdrop function processes the transfer of funds once
the airdrop begins. As it loops over the target accounts, unsuccessful transfers do
not halt the execution of the loop emitting a AirdropTransferFailure event.
However, if an airdropped address is a contract where the transfer of value fails, the
allocated tokens for that user will remain locked as no recovery function is
implemented (FLA-23). Also, the internal accounting does not contemplate failure
scenarios, adding to the total amount sent the amount corresponding to failed
transactions (FLA-24).

Currently the InitialAirdrop contract lacks a payable fallback which allows its
funding with native tokens (FLA-25). It is advised to document how it will be
funded, for example: by a regular transfer or self-destructing a foreign contract. If
the first option is chosen, a payable fallback must be added.

It is worth mentioning that the codebase declares an outdated pragma version
(0.7.6) which has breaking differences regarding the current commonly used
compiler versions (0.8.x).

© 2022 Coinspect 4

3. Summary of Findings

Id Title Total Risk Fixed

FLR-23 Failed transfers funds’ will be irreversibly
locked in InitialAirdrop

Medium ✔

FLR-24 Accounting mismatch on failed transfers Low ✔

FLR-25 Airdrop contract can not be funded with
native transfers

Info ✔

© 2022 Coinspect 5

4. Detailed Findings

FLR-23 Failed transfers funds’ will be irreversibly locked in InitialAirdrop

Total Risk

Medium

Impact
Medium

Location
InitialAirdrop.sol

Fixed
✔

Likelihood
Medium

Description

There is no way to recover funds sent to the initial airdrop contract. All the funds
belonging to failed transfers will be locked in the contract forever.

The airdrop will require having in advance the funds to be sent in the
InitialAirdrop. Once the airdrop begins, the transferAirdrop function sends the
tokens by looping over batches of at most 50 addresses. Receivers might be contracts
that do not implement a payable fallback or spend more than the 21,000 hardcoded
gas amount on receipt, as a consequence in order not to halt the whole loop an event
is emitted without reverting.

However, funds allocated for those accounts whose airdrop reverted for the reasons
mentioned before will remain locked on the contract as there are no recovery methods
implemented once the airdrop began.

Recommendation

Include a function that allows recovering locked funds after the airdrop is finished only
callable by the Governance.

Status

Fixed.

A withdrawUndistributedFunds function with the following properties was added:
- It is access controlled, only callable by governance().

© 2022 Coinspect 6

- It could only be called if transferAirdrop was previously called enough times
to loop over all the airdrop accounts. Has a strict equal to check that property.
Coinspect did not observe ways that invariants could be broken, however, in
case of exceeding the checked amount, funds will still remain locked.

- Performs a low level call transferring to an arbitrary recipient the remaining
balance of the contract.

© 2022 Coinspect 7

FLR-24 Accounting mismatch on failed transfers

Total Risk

Low

Impact
Low

Location
InitialAirdrop.sol

Fixed
✔

Likelihood
Low

Description

The totalTransferredAirdropWei state variable does not reflect the total actually
transferred if any of the transfers fails. Any code addition or off-chain components
relying on this value could be misguided.

While calling transferAirdrop(), the totalTransferredAirdropWei is added to
the weiAmount that is assumed to be sent on the last step of the loop. However if the
transfer is not successful, this amount is not subtracted from the accumulator.
Consequently, a mismatch between the real amount sent and the accounted one will
exist.

The internal accountability while transferring airdrop is made as follows:

function transferAirdrop() external airdropStarted mustBalance nonReentrant {
uint256 upperBound = Math.min(nextAirdropAccountIndexToTransfer + 50, airdropAccounts.length);
uint256 totalTransferredAirdropWeiTemp = 0;
for (uint256 i = nextAirdropAccountIndexToTransfer; i < upperBound; i++) {

// Get the account and amount
address account = airdropAccounts[i];
uint256 amountWei = airdropAmountsWei[account];
// update state
delete airdropAmountsWei[account];
delete airdropAccountsIndex[account];
delete airdropAccounts[i];
// Update total transferred
totalTransferredAirdropWeiTemp = totalTransferredAirdropWeiTemp.add(amountWei);
// Send
/* solhint-disable avoid-low-level-calls */
//slither-disable-next-line arbitrary-send-eth
(bool success,) = account.call{ value: amountWei, gas: 21000 }("");
/* solhint-enable avoid-low-level-calls */
if (!success) {

emit AirdropTransferFailure(account, amountWei);
}

}
// Update grand total transferred
totalTransferredAirdropWei =

totalTransferredAirdropWei.add(totalTransferredAirdropWeiTemp);

// Update current position
nextAirdropAccountIndexToTransfer = upperBound;

}

© 2022 Coinspect 8

For each step, the totalTransferredAirdropWeiTemp accumulates the amountWei of
each transfer. If the low level call performed one step later fails (e.g. if the gas spent is
greater than 21,000 or if its a contract that does not implement a payable fallback), the
non transferred amountWei will be later added to totalTransferredAirdropWei.

It is worth noting that the event emitted on transfer failure could be used to account for
the transfers.

No further impact was identified during the time allotted for this assessment.

Recommendation

If the call fails, subtract the amountWei from the temporary accumulator.

Alternatively, clearly document that the totalTransferredAirdropWei variable
includes attempted transfers that were not successful.

Consider modifying the totalTransferredAirdropWei variable name in order to
reflect what is actually represented.

Status

Fixed.

Now the transferAirdrop function distinguishes with two conditional branches
successful (incrementing the accumulator) from failed calls (as before, emitting
AirdropTransferFailure).

© 2022 Coinspect 9

FLR-25 Airdrop contract can not be funded with native transfers

Total Risk

Info

Impact
-

Location
InitialAirdrop.sol

Fixed
✔

Likelihood
-

Description

The InitialAirdrop contract lacks a payable fallback function that allows receiving
native tokens prior to the airdrop. Regular transfers as a funding method won’t be
supported.

Considered an informational issue, as Coinspect is not aware of how the funding will
be conducted and in case of deploying the contract as-is, funds could be sent by self
destructing a contract.

Recommendation

Document how the InitialAirdrop contract will be funded before the airdrop begins.
If it is going to be funded by regular transfers, add a payable fallback.

Status

Fixed.

The InitialAirdrop contract now allows only governance native token transfers via
receive payable.

© 2022 Coinspect 10

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 11

