
Flare fAsset
Smart Contract Audit

fAsset

Smart Contract Audit
V220829 Prepared for Flare • June 2022

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

FAS-1 Agents can withdraw underlying funds unpenalized: ref type check

FAS-2 Agents can withdraw underlying funds unpenalized: redemptionId check

FAS-3 Attackers can lock agents’ selfMint payment

FAS-4 Predictable payment references facilitate griefing challengers

FAS-5 Agents can mint fAssets without locking underlying assets

FAS-6 Agents can be liquidated with old transactions

FAS-7 Redeemers can receive less funds than corresponds to their burned
fAssets

FAS-8 Missing _validateSettings

FAS-9 burnAddress can be updated

© 2022 Coinspect 1

5. Disclaimer

© 2022 Coinspect 2

1. Executive Summary
In June 2022, Flare engaged Coinspect to perform a source code review of fAsset.
The objective of the project was to evaluate the security of the smart contracts.

The audit focused on the implementation correctness of the fAsset system smart
contracts.

The design of the system and other components of the Flare network on which
fAsset relies were assumed trusted and its incentives aligned with the fAsset
system. These dependencies include the FTSO oracles used to price assets against
the collateral, and the attestation providers that prove the presence or absence of
transactions and their expected properties in the underlying chains.

The fAsset system security also depends on the correct functioning of the off-chain
code responsible for critical tasks, such as underlying chain monitoring, reporting of
illegal payments and tracking pending payments. However, the off-chain code was
not in scope for this engagement.

As with other similar systems, the security of the funds is highly dependent on how
the configurable parameters are selected.

The following issues were identified during the initial assessment:

High Risk Medium Risk Low Risk

3 4 0
Fixed

3
Fixed

2
Fixed

0

FAS-1, FAS-2 and FAS-5 allow attackers to move the underlying funds without
being penalized, by exploiting errors in the implementation to bypass the protection
offered by challengers. FAS-7 describes a scenario where redeemers could not
receive the expected amount of collateral after burning their fAssets. FAS-4 shows
how agents could grief challengers in order to discourage them from reporting
illegal payments. FAS-6 is related to an assumption regarding the agents'
underlying EOA address that could be abused to unfairly liquidate them.

© 2022 Coinspect 3

https://www.coinspect.com

2. Assessment and Scope
The audit started on June 13 2022 and was conducted on the fasset-audit branch
of the git repository at https://gitlab.com/flarenetwork/fasset as of commit
3e1acb12978d5913102746d91b7892bbeb99baae of June 21 2022.
The audited files have the following sha256sum hash:

5c466adb97e4839475718c235e82420c26993b77e8bf284d66bc760358a12838 ./generated/contracts/AttestationClientMock.sol
7d0e0aa5402a0825e9dd8c8ef997bfe94f6d5187603d320a465268a932cc2081 ./generated/contracts/AttestationClientBase.sol
12e153d52f292348464cfabb29e8cab5903d997305caf6d740b9dbd4475c240c ./generated/contracts/StateConnectorMock.sol
bea344e023852265e0b3e4e216f5819b90e42444a9c0443c8cd015354f0ddb40 ./generated/contracts/AttestationClientSC.sol
ad138cdbc714438fbadb30fb2642dd179b4658de7f55cc1611508a8680129671 ./generated/interface/IAttestationClient.sol
9e3a2676b35ce795387e7d86b8428cf0cc5d70ee1c570781ebfd9318fb5f0ee8 ./generated/interface/IStateConnector.sol
0393db48b434ef7e973781224acf2c89c4a41889cd11e0faede6502ab159b021 ./fasset/mock/FtsoRegistryMock.sol
816a7880e5da49f457bef40c9ae3180f6f3034d35ab2a805e93e08ea3bac8ad6 ./fasset/mock/ERC20Mock.sol
9993a7ea512cadd3a18b06dd4bd23e87d53095817738410c47fc81d5382bd841 ./fasset/mock/ImportContractsMock.sol
1e7e548332c1527712b8f5641089366d9911e2c7331ae46f9ccd39b42ec2c87c ./fasset/mock/FtsoManagerMock.sol
e080b19f8be1fd1deff7e604ce4ff8088edc77fba3f401f97c4e384d62dd569e ./fasset/mock/FtsoMock.sol
fe543a033e812cc33fe2ccffbed04f8f4098a89c467ba7667fc6fe4796a5bbdf ./fasset/mock/AssetManagerMock.sol
3d87f707d0833dd82d28d92eb3351b88d798ab5efdb8dae2ea95ba7579b13bfe ./fasset/implementation/AgentVaultFactory.sol
c8110e237541466c07b0a5e15a4cd957bbb83a2405c0982797f3608a5b791045 ./fasset/implementation/Whitelist.sol
2e50313a609bbeda772d616f05cec1f9127f6e5f01257b450884829cdd65c1aa ./fasset/implementation/AssetManager.sol
db486a3766ee20a0646b054cb712ea301ab14ac582099d1243b3706824f19cd3 ./fasset/implementation/AssetManagerController.sol
ab3fe346977d551561b30e99619110076d611e394a631df1ff0092de4d66c4ae ./fasset/implementation/AgentVault.sol
f730bce6ad765c2ae438c0f5e0c4be43e59f81af2dfa8b507bad87f0d58a6db3 ./fasset/implementation/FAsset.sol
5406c9024caa300de5e54ccb254e722bd156eb92928cc3dba504bedfa6d129fb ./fasset/library/UnderlyingAddressOwnership.sol
845a05996b4723431931cd25a50e4b05f790966bb68d9df2e34c83551fdc1508 ./fasset/library/Conversion.sol
d548f6136639d3a17e379ca656996ded05b031e073d0a983f6ce249fe9fd5a59 ./fasset/library/Minting.sol
f9a17926700fca91979de14e73c9b97e92c9795b7f217ade41c27e5dd8c4cd41
./fasset/library/UnderlyingWithdrawalAnnouncements.sol
f012a0348b1e71b7e416eae95f522fdc7439be902dab9f9b521e05cdadd7a567 ./fasset/library/Redemption.sol
64178a0f7762c6e97f8319609681259d42e14309e9eee144aa039357f5a70f98 ./fasset/library/AssetManagerSettings.sol
8de4865abb5de4a6401ea554396fed11988a197b6ff03db7af5e5321bda2aa7f ./fasset/library/PaymentConfirmations.sol
2ca16d9526009f0d1c109308be04e920061f94cb870a71546f061676802eb768 ./fasset/library/SettingsUpdater.sol
40995fec603d1b6d0eb0ebf18a1fcb2d983eaf1ae4282ee9f5cb2fa7b895185a ./fasset/library/Liquidation.sol
e52fa88e3196709138db115222f03c82eb74c00649e2b5f0cf4a9192209c700a ./fasset/library/AMEvents.sol
b92d049ccadf22d487044822877de39fc117f9e2472635d79170e3bd4bf0502f ./fasset/library/AvailableAgents.sol
24a1906336b258f87792e92ba980a6a048cdf8839a63e42d13904796f403fcc9 ./fasset/library/PaymentReference.sol
76c830f49df16603b4a816dd6a06de4e79dd9df5366dd21d24bea512781570ae ./fasset/library/mock/RedemptionQueueMock.sol
e82514a3336a25d0b8b1eaccfba1150e44d482f02da43bbac005e1bdeaedc87d ./fasset/library/mock/ConversionMock.sol
9078acc6cf5c27e6803312bec7d21966dd86793382710297e6bd344ac6dca936 ./fasset/library/StateUpdater.sol
c80a095884c13cd450ae3bc4c351d2bf9288b055ad67af4e0182d30672e1d890 ./fasset/library/FullAgentInfo.sol
cff93fbae0bbec095c2ede59216d9b4bd978e918f5bc321b2292f2f31a1a3757 ./fasset/library/Agents.sol
fa3d8661288363210bcba0391d7a05a006d4e44460a2b05fd71ab02d249f00a7 ./fasset/library/RedemptionQueue.sol
78307db70462af163ae2cc487669da6bc239824572525020f4596cec10a2aacd ./fasset/library/AssetManagerState.sol
dcdec53addb979c82d23666d781f2facb1450eb7353f88a6717e21a3374fd6e3 ./fasset/library/CollateralReservations.sol
03dfb636a4a84e9d588b47825072c499735a76c07deaf5e68492178b4b9eaa3b ./fasset/library/AgentCollateral.sol
7979a016a02167539dcf6acb912dd25eb87c09aae782f2e446465bbeb9db7958 ./fasset/library/UnderlyingFreeBalance.sol
a56515b7552d5cc85c270eacfca226971541e7b3673b367781c1471c5adb3b09 ./fasset/library/TransactionAttestation.sol
cbef92e379f9205601d92c2c97e38a281752157ce5afc5a3753eaffd962da766 ./fasset/library/Challenges.sol
abe9853adb2fc0640e84365b89348576f1ad84bb77424261f12c25681f2dbc49 ./fasset/interface/IAssetManager.sol
c08c40f452b6888e79dcb99384caad1b10a390815601bca4b1419abb4d7eb4ff ./fasset/interface/IWNat.sol
338955619d75b1de8121608adab404f38ad55873ebab43772fcdf7ad2404d999 ./fasset/interface/IAgentVaultFactory.sol
df82a6c93de5e38596b6d38da3fd99369d45625a6f3858b29103e879e78546ad ./fasset/interface/IWhitelist.sol
95e28b33ef15e2d98e1034899dcfcbe53f2e9f9d63ebfc87c110985bc456efc7 ./fasset/interface/IFAsset.sol
e226f09b2b7e244506b20735ccfabbe358fcea04ac87c2267ab9d9b2d07ebc4c ./fasset/interface/IAssetManagerEvents.sol
4822c8abce65acaebbe43df0282af18cc33d59cce58eb5e1079c3aaba5721dd6 ./fasset/interface/IAgentVault.sol
a4b3014e37916881aa9aa2e7a7d80b5fb931f166df67539490b22984abfa9b50 ./governance/mock/AddressUpdatableMock.sol
3555f618268fabdfc2023b634afbbf9d743ff911f3c96d100610478c43c70faa ./governance/mock/GovernedMock.sol
7a35ab0fb87846c3e055c3fcf4542d3df4c00375076d5e59882d706ce3e501c1 ./governance/implementation/GovernedBase.sol
3f160dde7943001b1eedc94876e14bd52785a410560ea4b298060070347825f9 ./governance/implementation/Governed.sol
71c1435f13dd898993b8c861b181857c1ebf6876c3b91adeb1183a9024709619 ./governance/implementation/AddressUpdatable.sol
26599de22dce1bb771dec0d22e2b3c8bf99b0f5230a702c91c2daff3935d29e6 ./utils/mock/SafePctMock.sol
01c86baab70a125e3e2fea8b136b8418207a3ab953678804b9f9399a8e07d18e ./utils/mock/SafeMath64Mock.sol
6d1f3b24b29eb3feb9e45d3e3109d068e0b23ae6f4a72086d859339e7441e584 ./utils/lib/SafePct.sol
4122c1d3c3e748172f897a95765b913de2aef6c0ece943287087f5177c826a02 ./utils/lib/SafeBips.sol
39dff1b27e26a139810d011ab0aeb66cd9857ea339612d859314655656f86801 ./utils/lib/SafeMath64.sol
0ccebdfb356b3533eb9acb45090c62fab097026e573228310a3e17647c704112 ./utils/lib/MathUtils.sol
3617f640c89459bb1f020fbc0f6f4adc0e2c574735970af0586b651618661ac4 ./utils/Imports.sol

The fAsset system allows minting fAssets in the Flare network that represent
assets from other blockchains such as BTC, XRP and Ethereum. This platform is
implemented as an overcollateralized lending system, where fAsset agents lock

© 2022 Coinspect 4

https://gitlab.com/flarenetwork/fasset

collateral in the form of FLR, the Flare network native asset. The collateral backing
the minted assets must be always above a configurable per fAsset collateral ratio or
the agent can be liquidated.

By design, the underlying chain funds are not actually locked, but they are
expected to be held in the declared EOA account. These funds, which depositors
transfer to the agent’s underlying chain EOA address, are intended to be transferred
back to the redeemers when fAssets are redeemed. If an agent fails to comply with
the expected underlying payment, its collateral can be used to pay back the
redeemer.

The fAsset system relies on off-chain “challengers” that are incentivized to monitor
transactions in the underlying blockchain and report any illegal payment that moves
funds out of the agent’s EOA address without proper justification. In that scenario,
the agent collateral is fully liquidated at a discounted price. However, Coinspect
identified different issues that allowed agents to bypass this protection mechanism
and break the agent’s underlying expectation (see FLR-1, FLR-2 and FLR-5).

Because the underlying funds are not locked, agents are always in control of them.
During a quick price swift (e.g., the FLR token price decreases fast in comparison to
the underlying asset price), if an agent becomes undercollateralized and is not
liquidated in time, it can choose to escape with all the underlying funds. As a result,
redeemers will not be able to obtain the total amount of underlying assets that
correspond to the fAssets being redeemed (see FLR-7).

The code reviewed limits certain operations to a configurable allowlist. Flare team
clarified that the whitelist is only intended for the initial testing period and will be
removed afterward.

The following components were assumed trusted and properly incentivized and
implemented during this audit:

1. FTSO oracles
2. Attestation provider
3. Off-chain

a. fAsset agents
b. Attestation clients
c. Challengers

The system relies on the FTSO oracle system to price each underlying asset against
the collateral locked in the agent’s vaults. It is worth noting that by design, as
explained in the systems specification, two pairs of prices are compared: one

© 2022 Coinspect 5

obtained from every price provider and other from only the trusted providers. The
value resulting in a higher collateral ratio is utilized in order to protect the fAsset
agents from being liquidated by the colluding FTSO price providers. If this kind of
collusion is considered possible, Coinspect recommends evaluating the
possibility of FTSO price providers manipulating the asset prices in order to
inflate the fAssets agent’s collateral ratio instead.

© 2022 Coinspect 6

3. Summary of Findings

Id Title Total Risk Fixed

FAS-1 Agents can withdraw underlying funds
unpenalized: ref type check

High ✔

FAS-2 Agents can withdraw underlying funds
unpenalized: redemptionId check

High ✔

FAS-3 Attackers can lock agents’ selfMint payment Medium ✔

FAS-4 Predictable payment references facilitate
griefing challengers

Medium ✔

FAS-5 Agents can mint fAssets without locking
underlying assets

High ✔

FAS-6 Agents can be liquidated with old
transactions

Medium ✓

FAS-7 Redeemers can receive less funds than
corresponds to their burned fAssets

Medium ✘

FAS-8 Missing _validateSettings Info ✔

FAS-9 burnAddress can be updated Info ✔

© 2022 Coinspect 7

4. Detailed Findings

FAS-1 Agents can withdraw underlying funds unpenalized: ref type check

Total Risk

High

Impact
High

Location
Challenges.sol
Redemption.sol
PaymentReference.sol

Fixed
✔

Likelihood
High

Description

Agents can modify payment references and reuse any redemptionId to withdraw
money from the underlying chain without being challenged and penalized.

There are two challenges that should catch this misbehavior:
illegalPaymentChallenge and doublePaymentChallenge. The first challenge is
used for penalizing payments that do not match a redemption ticket. The second
challenge is used for flagging the reuse of a ticket.

Because the redemptionId is a subarray of the paymentReference, an agent can
reuse a redemptionId with a different paymentReference to avoid being punished by
either methods.

The isValid function implementation fails to properly validate the _refType:

function isValid(bytes32 _reference, uint256 _type) internal view returns (bool) {

uint256 refType = uint256(_reference) & _type;

uint256 refLowBits = uint256(_reference) & ((1 << TYPE_SHIFT) - 1);

// for valid reference, type must match and low bits may never be 0 (are either id or

address)

return refType == _type && refLowBits != 0;

}

But in the doublePaymentChallenge the whole referencePayment must match to be
penalized:

// payment references must be equal

require(_payment1.paymentReference == _payment2.paymentReference, "challenge: not duplicate");

© 2022 Coinspect 8

And as a consequence it is possible to craft many payment references with different
reference tags that are considered a valid REDEMPTION.

By exploiting this issue an agent can withdraw the underlying assets held in their
address without penalization.

A test case exploiting this scenario is shared below. This proof of concept modifies an
existing payment reference by replacing the first 8 bytes with 0xffffffff:

it("must fail", async () => {
const agent = await Agent.createTest(context, agentOwner1, underlyingAgent1);

const minter = await Minter.createTest(context, minterAddress1, underlyingMinter1,
context.underlyingAmount(10000));

const redeemer = await Redeemer.create(context, redeemerAddress1, underlyingRedeemer1);
const challenger = await Challenger.create(context, challengerAddress1);
// make agent available
const fullAgentCollateral = toWei(3e8);
await agent.depositCollateral(fullAgentCollateral);
await agent.makeAvailable(500, 2_2000);
// update block
await context.updateUnderlyingBlock();
// perform minting
const lots = 3;
const crt = await minter.reserveCollateral(agent.vaultAddress, lots);
const txHash = await minter.performMintingPayment(crt);
const minted = await minter.executeMinting(crt, txHash);
assertWeb3Equal(minted.mintedAmountUBA, await context.convertLotsToUBA(lots));
// redeemer "buys" f-assets
await context.fAsset.transfer(redeemer.address, minted.mintedAmountUBA, { from: minter.address });
// perform redemption
const [redemptionRequests, remainingLots, dustChanges] = await redeemer.requestRedemption(lots);
assertWeb3Equal(remainingLots, 0);
assert.equal(dustChanges.length, 0);
assert.equal(redemptionRequests.length, 1);
const request = redemptionRequests[0];
assert.equal(request.agentVault, agent.vaultAddress);
const tx1Hash = await agent.performRedemptionPayment(request);
const fakeTxHash = await agent.performFakeRedemptionPayment(request);
// others cannot confirm redemption payment immediately or challenge it as illegal payment

await expectRevert(challenger.confirmActiveRedemptionPayment(request, tx1Hash, agent), "only agent
vault owner");

await expectRevert(challenger.illegalPaymentChallenge(agent, tx1Hash), "matching redemption active");
await expectRevert(challenger.illegalPaymentChallenge(agent, fakeTxHash), "matching redemption

active");
await expectRevert(challenger.doublePaymentChallenge(agent, tx1Hash, fakeTxHash), "challenge: not

duplicate")
console.log("Illegal payment or double payment should catch this and not revert");

});

async performFakeRedemptionPayment(request: EventArgs<RedemptionRequested>, options?:
MockTransactionOptionsWithFee) {

const paymentAmount = request.valueUBA.sub(request.feeUBA);
let ref = request.paymentReference;
let newRef = "0xffffffffffffffff" + ref.substring(18, ref.length);
return await this.performPayment(request.paymentAddress, paymentAmount, newRef, options);

}

This same issue affects the paymentsMakeFreeBalanceNegative challenge and the
ANNOUNCED_WITHDRAWAL logic which will not catch the misbehavior.

© 2022 Coinspect 9

Attack scenario

An attacker could perform the next steps to exploit this issue

1. Create an agent so it can hold at least 2 lots.
2. Self mint two lots or wait until another user mints.
3. Create a redemption ticket for 1 lot.
4. Use the redemption ticket twice (or as many times as desired) to execute

payments using the exploit above.
5. Call confirmRedemtpionPayment to account for the legal payment so that the

free underlying balance is updated.
6. Recover the collateral.
7. Attacker ends up with 1 extra lot of underlying.

Recommendation

Correct the isValid function.

Make sure the checks in both challenges are consistent and that two different payment
references can not exist for the same redemption id.

Status

This issue was addressed by commit a040c3d47ad95fff23f4fb281c42d425c09484c4

© 2022 Coinspect 10

FAS-2 Agents can withdraw underlying funds unpenalized: redemptionId
check

Total Risk

High

Impact
High

Location
Challenges.sol
Redemption.sol
PaymentReference.sol

Fixed
✔

Likelihood
High

Description

Agents can modify payment references and reuse any redemptionId to withdraw
money from the underlying chain without being challenged and penalized.

There are two challenges that should catch this misbehavior:
illegalPaymentChallenge and doublePaymentChallenge. The first challenge is
used for penalizing payments that do not match a redemption ticket. The second
challenge is used for flagging the reuse of a ticket.

Because the redemptionId is a subarray of the paymentReference, an agent can
reuse a redemptionId with a different paymentReference to avoid being punished by
either methods.

The decodeId function is used to obtain the redemptionId in the
illegalPaymentChallenge:

uint64 redemptionId = PaymentReference.decodeId(_payment.paymentReference);

Which is only the last 64 bits of the 256 bits paymentReference:

function decodeId(bytes32 _reference) internal pure returns (uint64) {

return uint64(uint256(_reference) & ((1 << 64) - 1));

}

But in the doublePaymentChallenge the whole referencePayment must match to be
penalized:

// payment references must be equal

require(_payment1.paymentReference == _payment2.paymentReference, "challenge: not duplicate");

© 2022 Coinspect 11

The redemption id is generated in the _createRemptionRequest function when a user
calls the redeem function:

// emit event to remind agent to pay

emit AMEvents.RedemptionRequested(_data.agentVault,

requestId,

_redeemerUnderlyingAddressString,

redeemedValueUBA,

redemptionFeeUBA,

lastUnderlyingBlock,

lastUnderlyingTimestamp,

PaymentReference.redemption(requestId));

}

The code in PaymentReference.sol contract casts the 64 bits unsigned int to 256 bits
before bitwise oring with the payment type identifier:

function redemption(uint64 _id) internal pure returns (bytes32) {

return bytes32(uint256(_id) | REDEMPTION);

}

Because of that, an agent can modify a paymentReference by changing the bits
between the REDEMPTION tag and the 64 bits of the _id is so that the redemptionId

value is not affected when retrieved by the decodeId function. This prevents the agent
from being challenged from both an illegal or a double illegal payment.

Exploiting this issue an agent can withdraw the underlying assets held in their address
without penalization.

A test case exploiting this scenario is shared below. This proof of concept modifies an
existing payment reference by replacing the first 16 bytes after the reference type tag
with 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa. After decoding the payment reference,
the redemption Id will be 1.

it("must fail", async () => {
const agent = await Agent.createTest(context, agentOwner1, underlyingAgent1);

const minter = await Minter.createTest(context, minterAddress1, underlyingMinter1,
context.underlyingAmount(10000));

const redeemer = await Redeemer.create(context, redeemerAddress1, underlyingRedeemer1);
const challenger = await Challenger.create(context, challengerAddress1);
// make agent available
const fullAgentCollateral = toWei(3e8);
await agent.depositCollateral(fullAgentCollateral);
await agent.makeAvailable(500, 2_2000);
// update block
await context.updateUnderlyingBlock();
// perform minting
const lots = 3;

© 2022 Coinspect 12

const crt = await minter.reserveCollateral(agent.vaultAddress, lots);
const txHash = await minter.performMintingPayment(crt);
const minted = await minter.executeMinting(crt, txHash);
assertWeb3Equal(minted.mintedAmountUBA, await context.convertLotsToUBA(lots));
// redeemer "buys" f-assets
await context.fAsset.transfer(redeemer.address, minted.mintedAmountUBA, { from: minter.address });
// perform redemption
const [redemptionRequests, remainingLots, dustChanges] = await redeemer.requestRedemption(lots);
assertWeb3Equal(remainingLots, 0);
assert.equal(dustChanges.length, 0);
assert.equal(redemptionRequests.length, 1);
const request = redemptionRequests[0];
assert.equal(request.agentVault, agent.vaultAddress);
const tx1Hash = await agent.performRedemptionPayment(request);
const fakeTxHash = await agent.performFakeRedemptionPaymentID(request);
// others cannot confirm redemption payment immediately or challenge it as illegal payment

await expectRevert(challenger.confirmActiveRedemptionPayment(request, tx1Hash, agent), "only agent
vault owner");

await expectRevert(challenger.illegalPaymentChallenge(agent, tx1Hash), "matching redemption active");
await expectRevert(challenger.illegalPaymentChallenge(agent, fakeTxHash), "matching redemption

active");
await expectRevert(challenger.doublePaymentChallenge(agent, tx1Hash, fakeTxHash), "challenge: not

duplicate")
console.log("Illegal payment or double payment should catch this and not revert");

});

async performFakeRedemptionPaymentID(request: EventArgs<RedemptionRequested>, options?:
MockTransactionOptionsWithFee) {

const paymentAmount = request.valueUBA.sub(request.feeUBA);
let ref = request.paymentReference;
let newRef = "0x4642505266410002aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" + ref.substring(50, ref.length);
return await this.performPayment(request.paymentAddress, paymentAmount, newRef, options);

}

This same issue affects the paymentsMakeFreeBalanceNegative challenge and the
ANNOUNCED_WITHDRAWAL logic which will not catch the misbehavior.

The attack scenario described in FAS-1 applies to this issue.

Recommendation

Fix the decodeId function to take into account all bytes provided.

Make sure the checks in both challenges are consistent and that two different payment
references can not exist for the same redemption id.

Status

This issue was addressed by commit f6aaf1a85b9ac46318c8326706440a0f2bb04f24.

© 2022 Coinspect 13

FAS-3 Attackers can lock agents’ selfMint payment

Total Risk

Medium

Impact
Low

Location
Minting.sol

Fixed
✔

Likelihood
High

Description

Agents' self-mint payment can get locked until more collateral is added or available.

When an agent uses the selfMint function for minting fAssets, if there is not enough
collateral to cover the minting value, the selfMint function fails and the funds get
locked.

This is especially problematic as any user can monitor the underlying chain and
reserve collateral for minting between the agent's payment and the self-minting
transaction.

The agent then can attempt to add more collateral in order to be able to execute the
self-mint. But the attacker can also preempt this new self-mint request and reserve
the new collateral the agent just deposited.

A mitigation factor for this attack is the cost of reserving collateral or the minting fee in
case the attacker decides to actually mint the fAssets.

Recommendation

The self minting process should reserve collateral the same way as any minting
process.

Status

Flare does not consider this issue needs to be fixed, as they explained that as a
mitigating factor the agent can selfMint 0 lots in order to update the free underlying
balance to include all funds that were deposited.

© 2022 Coinspect 14

This mitigation procedure will be added to the documentation to help agents operators
know how to free their funds if locked in this scenario.

© 2022 Coinspect 15

FAS-4 Predictable payment references facilitate griefing challengers

Total Risk

Medium

Impact
Medium

Location
UnderlyingWithdrawalRequests.sol
PaymentReferences.sol
Challenges.sol

Fixed
✔

Likelihood
Medium

Description

Attackers can trick challengers into attempting failed challenge attempts in order to
harm them. As a result, challengers will spend gas and get no commission for their
efforts. This can discourage them from reporting similar transactions.

Payment references are predictable. These are formed by joining a payment type tag
plus an incremental id counter. This allows the attacker to send a payment, with the
know-to-be-next payment reference.

Then, for example, the attackers do not need to announce an underlying withdrawal
and wait for the transaction to return the intended reference payment. They can send a
payment with the predicted payment reference, and wait for any challengers being
submitted to the network. Then they can front-run this challenge with an
announcement in order to prevent the challenge from succeeding.

This could be repeated until an automated challenger bot runs out of gas or until
challengers are discouraged from continuing to report illegal payments.

Recommendation

Make reference payments not predictable in order to force the announcement to be
performed before the payment.

Status

This issue was addressed by commit
6c4d93113a9eeedb30625c9835f5d2a1fe80f434.

© 2022 Coinspect 16

The ID can still be correctly predicted by generating it in the right block, but
challengers can defend themselves against griefing attempts using better strategies
(e.g. starting the challenge one block after it).

© 2022 Coinspect 17

FAS-5 Agents can mint fAssets without locking underlying assets

Total Risk

High

Impact
High

Location
Minting.sol
CollateralReservation.sol
PaymentReference.sol
Agents.sol
UnderlyingAddressOwnership.sol

Fixed
✔

Likelihood
High

Description

Agents can mint fAssets at creation time, without locking the corresponding
underlying asset at creation time.

When an agent is created the AssetManager requires an EOA proof. This proof can
send any amount of underlying assets without being penalized.

Attackers can perform the next steps:
1. Send a transaction to their underlying address with the value to be minted using

a precalculated Collateral Reservation ID.
2. Perform the EOA proof sending that value out of the address.
3. Create the agent with the proof and add the required collateral.
4. Wait until the right moment, allow third party minting and create a Collateral

Request that uses the previously calculated ID.
5. Use the transaction at step 1 for minting fAssets, these assets will not be locked

in the underlying address and cannot be penalized.

This can be done due to a set of properties in the contracts.

The minting process accepts old transactions. While the selfMint and the
confirmTopupPayment functions require the transaction to be new enough, this is not
true for the mintingExecuted function. This check only exist on the former functions

require(_payment.blockNumber >= agent.underlyingBlockAtCreation,
"self-mint payment too old");

The EOA proof can send arbitrary money to any address. This is an unnecessary
property of the proof.

Collateral Reservation IDs are manipulable. During the audit the Flare team added a
protection to prevent guessing the ID (per Coinspect’s recommendation in finding
FAS-4). But this fix is not enough to prevent these kinds of attacks. Basically, the

© 2022 Coinspect 18

randomized ID is the last used ID (starting at 1) plus the block number modulus 1000.
Because the agents can choose when collateral can be reserved, they can select the
block where the reservation happens and force it to match the precalculated ID.

Even though, ultimately, by design agents can always remove all funds deposited in
their underlying address, this issue allows them to do this without being liquidated
and bypassing the challengers controls set in place with this purpose. This breaks
the expectations for Agent_100 type agents as described in the protocol’s
specification.

As a mitigating factor, the corresponding redemption ticket is created. When this ticket
is redeemed the agent will be forced to return the underlying funds or collateral in
case of default.

Recommendation

Do not accept transactions that happened before the agent creation time.

Improve the ID randomization.

Evaluate adding a challenge that enables penalizing an agent if the EOA underlying
balance is below the expected amount. This challenge would be useful to report an ill
behaved agent in case any other unknown scenario is exploited. Implementing this
solution would require the ability to prove the balance in a certain block and keeping
history of the expected free balance.

Status

Fixed in commit 651a0c53bacec8519dd494facc2bbe298dafd9d0. The code now
checks that the minting payment is from a later block than the EOA proof payment

© 2022 Coinspect 19

FAS-6 Agents can be liquidated with old transactions

Total Risk

Medium

Impact
High

Location
Challenges.sol

Fixed
✓

Likelihood
Low

Description

Challengers can use transactions performed by the agent underlying address before
the agent creation to report an illegal transaction and fully liquidate them.

The challenges do not verify the transaction being denounced occurred after the agent
creation timestamp.

The current code assumes no transaction was performed by the underlying EOA
before the agent creation, but this is not enforced nor documented.

Recommendation

Do not accept challenges of transactions that happened before the agent creation time.
If this is the intended behavior, clearly document it to avoid agents being deployed
with underlying addresses with previous transactions. Alternatively, enforce this
requirement during the EOA verification step.

Status

This issue was acknowledged by Flare. Momentarily, a warning was added in the
specification alerting about this issue (section Agent’s underlying address).

© 2022 Coinspect 20

FAS-7 Redeemers can receive less funds than corresponds to their burned
fAssets

Total Risk

Medium

Impact
High

Location
Agents.sol

Fixed
✘

Likelihood
Low

Description

Users could receive less collateral than expected when redeeming their fAssets.

The redeemer’s fAssets are burned when the redemption process starts. Then, a
redemption ticket is picked to fulfill the redemption request, and the agent that created
it is expected to transfer the amount of underlying assets corresponding to this ticket.
If the agent fails to comply in time, the redeemer can report the lack of payment and
the collateral in the agent’s vault is used to compensate the redeemer.

The payout function does not revert if the collateral in the vault is not enough to pay
the redeemer. Instead, the minimum between what is available and what is expected is
transferred:

function payout(

AssetManagerState.State storage _state,

address _agentVault,

address _receiver,

uint256 _amountNATWei

)

internal

returns (uint256 _amountPaid)

{

IAgentVault vault = IAgentVault(_agentVault);

// don't want the calling method to fail due to too small balance for payout

_amountPaid = Math.min(_amountNATWei, fullCollateral(_state, _agentVault));

vault.payout(_state.settings.wNat, _receiver, _amountPaid);

}

As a consequence, if there is an uncollateralized agent in the system, the redeemer will
receive less than expected for the amount of fAssets it burned.

© 2022 Coinspect 21

This will depend on the redemption ticket and agent that were chosen from the FIFO
redemption queue by the system. It could happen that there are enough funds in other
agents to comply with the redemption but because of the redemption ticket chosen the
redeemer results being harmed.

Recommendation

Allow redeemers to specify if they accept burning their fAssets for less than the
expected amount. Consider re-minting the burned assets for the redeemer.

Status

This issue was acknowledged. Flare does not expect this situation to occur “... because
the required collateral ratio and the liquidation system mean that the price asset/flare
should fall by a factor of 2 in relatively short time for such a situation to arise”.

© 2022 Coinspect 22

FAS-8 Missing _validateSettings

Total Risk

Info

Impact
-

Location
SettingsUpdater.sol

Fixed
✔

Likelihood
-

Description

The _validateSettings method is missing in the SettingsUpdater contract.

Recommendation

Implement the missing method.

Status

This issue was acknowledged and fixed during the audit in commit
c10e43f7f358511ba6d6a321d15e0ab27852ffff.

© 2022 Coinspect 23

FAS-9 burnAddress can be updated

Total Risk

Info

Impact
-

Location
AssetManagerSettings.sol
Minting.sol
CollateralReservations.sol
Agents.sol

Fixed
✔

Likelihood
-

Description

The address used to burn funds is a setting and can be updated.

Recommendation

Consider making the burn address immutable.

Status

Flare team stated this will be set to a constant for deployment.

© 2022 Coinspect 24

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 25

