
Source Code Review

Multichain Client Library

© Coinspect 2024 1 / 15

Multichain Client Library
Source Code Review

Version: v240220 Prepared for: Flare November 2023

Security Assessment

Executive Summary

Summary of Findings

Findings where caution is advised

Solved issues & recommendations

Assessment and Scope

Fixes Review

Detailed Findings

Appendix

Testcases

Disclaimer

© Coinspect 2024 2 / 15

Executive Summary

In June 2022, Flare engaged Coinspect to perform a source code review of its
Multichain Client Library. The objective of the project was to evaluate the overall
security posture of the library.

Solved Caution Advised Resolution Pending

High

1
High

0
High

0

Medium

1
Medium

0
Medium

0

Low

1
Low

0
Low

0

No Risk

0
No Risk

0
No Risk

0

Total

3
Total

0
Total

0

Coinspect identified one high-risk issue related to the parsing of Algorand
transactions, along with medium and low-risk issues within UTXO chains.

In addition to these specific issues, Coinspect also notes a broader concern regarding
the library's abstraction level. Acting merely as a thin wrapper over JSON RPC
methods of various blockchains, each with potentially different security assumptions,
the library's design makes it susceptible to user errors. To mitigate this, Coinspect
recommends a more focused effort to standardize responses across different
blockchains whenever possible. Clear documentation of any limitations, particularly

https://coinspect.com/

© Coinspect 2024 3 / 15

when standardization is not feasible, would greatly reduce the likelihood of user
mistakes.

© Coinspect 2024 4 / 15

Summary of Findings

Findings where caution is advised

These issues have been addressed, but their risks have not been fully mitigated. Any
future changes to the codebase should be carefully evaluated to avoid exacerbating
these issues or increasing their probability.

Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

MCC-1 Attacker can create Algorand transactions with fake details High

MCC-2 UTXO chains return transactions not yet included in a block Medium

MCC-3 UTXO chains use wrong data to report status Low

© Coinspect 2024 5 / 15

Assessment and Scope

The audit started on June 20 and was conducted on the mcc-audit branch of the git
repository at https://github.com/flare-foundation/multi-chain-client/tree/mcc-audit as
of commit fe0b7cbf493cac6937635aea09a38b9b37825954 of Jun 20.

The assessment considered the codebase a library to be used by unknown clients,
although special attention was paid to possible interactions with Flare’s Attestation
Client.

The audited files have the following hash:

da9e1635a0490475f81dff9862773ce14f891a4fb91ca9c186dd272496f89d8b
./src/utils/retry.ts
202cd6e2b07c87969474dc5d31aea8da248620b69b0346dfaf677db8ee214777
./src/utils/typeReflection.ts
3e2606d116b250c81b2ed4c59cfc5c19e8f57e7618bfbf1782ce636aa36fab34
./src/utils/constants.ts
f219acd5c6c3efde6b155e31bbe77a42d502d3e4b1ad8f91c724934fe1dfa9e4
./src/utils/utxoUtils.ts
6145423af75ec26258c2dd98b74f0154d7e4f540aa1de1760b8a97bf555a9315
./src/utils/xrpUtils.ts
65ab01128e5ecd3bd6e471775d1425c85a1f4b701299a5f6835539533a8947c5
./src/utils/trace.ts
e505bd2a55d92dc4569a8cbc2c4c8c85a724c10ef7ebfd5e0aa12bf38ac3cf6f
./src/utils/algoUtils.ts
54be778f511600818226066b6f7699d9b6508e8244bccd162ba38e9fc9904e2c
./src/utils/managed.ts
b4985c395cb7fe6ec9e651467d95e7fb5e1e3248fefa4a62c511c1a10942c151
./src/utils/utils.ts
2ef86b108d29d44000df6a2a8714c289cd2902da5e8d45f4ff780eb48034f0a2
./src/utils/errors.ts
39acd5d7aec72f37dcf13dda376f382e8e2f029b87bdf6baad5a96be8386dcf7
./src/utils/strackTrace.ts
e59d86a9c5da68be5903329dd337517e725f6527ff83a0d3309512a968f1d2a8
./src/types.ts
868086e3a137efebef103641a39ec91de2e11d7fc4227f49953ad84bb5649c74
./src/types/genericMccTypes.ts
c6a6ee79c99979710647e29bd80b877c852fa132fe4d0ae7f0fd1cbf3b6c59d4
./src/types/utxoTypes.ts
c3467a4ea450ee429517ad38fb0c551e30056689a88ae3f6c988886e2cf24b41
./src/types/axiosRateLimitTypes.ts
4aaea9fca1a36b826abaa6a774a38cc441cd7f823542566d4e95b8970b46ba84
./src/types/xrpTypes.ts
3ae3fc7b6c23b1a2bd1abec2382798d72aaa6c0c8d7d4d7118e74d5ca4fe76ad
./src/types/algoTypes.ts
5fc5b9f935609be9500e5da8f141b0971c6e300f3bdd5dccbe8031fa702eaaa9
./src/types/attestationTypes.ts
73a89afdf58be83486a508b7574f7b8de5c520bd3222424024d480fed29ce9d1
./src/types/dogeTypes.ts

© Coinspect 2024 6 / 15

b6b3675bda27b4fc0966a149c18f0c1297e0981cd5e09ec78af420148204bae1
./src/chain-clients/LtcRpcImplementation.ts
591de157a54cba01ce33c4832178e48b8274225d3d1f9d44886164f51a0ce959
./src/chain-clients/UtxoCore.ts
fb404bba7e64a59fc3d7827407383818b037fc5c4c6417f3ba0ea2a2be8bc042
./src/chain-clients/AlgoRpcImplementation.ts
40062a36bfb2d653444076ef1b29671829f38892065f94af4b5d294e9d9035b3
./src/chain-clients/BtcRpcImplementation.ts
546a03acd5221dc112cc30e40d0671560d707dbfcd1e83abc81a5cbc30fb4255
./src/chain-clients/XrpRpcImplementation.ts
62fe3cba95d60cb5e57d177af78356fd0480e97526ca735a1b19fdbd34beb4eb
./src/chain-clients/DogeRpcImplementation.ts
9d122801e897a84f088bd2b6ee367c4c947301f35a808e09641a14c80e25d865
./src/index.ts
f4218e4664cbfb950e7d65b492851bd403ebd23a72dc6c84902e0a94757d3db1
./src/base-objects/transactions/LtcTransaction.ts
a17d2c0ddc85e18ae4f0b441562e8eac601462bb018034e420f5a6f190698346
./src/base-objects/transactions/UtxoTransaction.ts
6a6ea716bf25956f76df9df9413316fe91038f2dafcf81f8ec9f2f738b2083d3
./src/base-objects/transactions/XrpTransaction.ts
4e5e1c6c68d337a016f6f812513bc7a68e1b39ef90e5dcc2c2937e8d40904a04
./src/base-objects/transactions/BtcTransaction.ts
81e160d908734970bbfb60d5801631a423655584b8e9169b8722cc95888d4d6a
./src/base-objects/transactions/DogeTransaction.ts
29b9eab7314c6bf81e49440f5f1dc0df96f4236e5e8d72e66a8230d3e67a5b64
./src/base-objects/transactions/AlgoTransaction.ts
2a05cafcea1667428a5b900edc48f25af2f9641d0c3bdc18e8e95143d379639d
./src/base-objects/BlockBase.ts
1d374b5dbeb263c593e76850b33dc562331b6410f98807d79a6ffe486606e0c1
./src/base-objects/status/XrpStatus.ts
2866ba2abba0b653b3e0089d3ac7acfb1ea2fb2408622257c0e4cc0e7cf6b683
./src/base-objects/status/AlgoStatus.ts
21c7dbb06e9c675a314ccc36b4355bd01d6e8a224fa2e795ca1eecce70534ed4
./src/base-objects/status/UtxoStatus.ts
b7f80981df637fbc9b55f47eb810aba0588c0069adaa5eb80fa84006d3059fa5
./src/base-objects/TransactionBase.ts
c4829e108d884062a407af6ff87e36260d0210de7b809450a4b5577e06d3ed6b
./src/base-objects/StatusBase.ts
2a0be9fc0b4a7acda9a22f245a64077a4ace39f48e17fda28ef44a82b816ff7a
./src/base-objects/blocks/DogeBlock.ts
b05357f4366465880fd6f9aee93b6113f68559b7cdfd69dcae7dbd24af96808d
./src/base-objects/blocks/LtcBlock.ts
e2270e6bd2eaec2692b77525b2f2c37d4c820ebf274bc08c536eceba5277dc39
./src/base-objects/blocks/XrpBlock.ts
66024e2f6618bd9d8d4a70a64500c76161cff4912f9e0c0296aa59283fa6f223
./src/base-objects/blocks/BtcBlock.ts
2f53715434252df7cdca1fdce3e97de014e44c13ae8a20fde78de727e33f8bd9
./src/base-objects/blocks/AlgoBlock.ts
2a024f1854c6d8ebd56d89b329089beb416a97dda902f5df2007d71fdf2cbabb
./src/base-objects/blocks/LiteBlock.ts
84f2e45847fba2cb395e8901fbf2345739675055f01ebf03336e9804293849f4
./src/base-objects/blocks/UtxoBlock.ts
044c47a84fa7f7014f59ffc4069b842814117b98337646459b444962d49798e6
./src/axios-rate-limiter/axios-rate-limit.d.ts
43289e8f2580ab832d0f89b90f18bc57dd2de18d86feff87fac76d3954ab7a5b
./src/global-settings/globalSettings.ts

© Coinspect 2024 7 / 15

Fixes Review

Flare shared their fixes in the tag mcc-audit-0-fix, plus a pull request showing the diff
and a document outlining their reasoning on every change.

Overall, the fixes were correct and addressed the vulnerabilities reported. The only
issue not completely addressed was MCC-3, but its impact is considerably low and
unlikely to affect operations.

https://github.com/flare-foundation/multi-chain-client/tree/mcc-audit-0-fix

© Coinspect 2024 8 / 15

Detailed Findings

MCC-1

Attacker can create Algorand transactions
with fake details

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

src/base-objects/transactions/AlgoTransaction.ts

Description

The library's vulnerability lies in its susceptibility to incorrectly parsing Algorand
transactions, which could be exploited by attackers to execute malicious
transactions. Additionally, innocent users may unintentionally encounter parsing
errors, potentially resulting in unintended consequences. The severity of these
issues varies depending on the library's usage, with one possible consequence

© Coinspect 2024 9 / 15

being the unauthorized transfer of funds to another account without the ability to
inform the State Connector.

Coinspect found three scenarios where Algorand’s transactions are not
interpreted correctly:

When a transaction is sent by the clawback address, the library will interpret
the source address as the clawback instead of the actual source, the asnd.
When a transaction uses AssetCloseTo, the library will interpret the receiver
address as only the arcv instead of both the arcv and the address specified on
AssetCloseTo. This also leads to incorrect amounts being reported by the
library.
When a transaction uses CloseRemainderTo, a similar scenario occurs, but the
transaction will be of type pay. This makes it a valid native transaction
according to the library and it may have a valid payment reference. This may be
used by an attacker to move funds undetected by the Attestation Client.

It's important to note that the operations triggering these issues do not
necessarily require deliberate manipulation and may occur during the regular
operation of a user's account.

The specific functions contributing to this problem are the getters
sourceAddresses, receingAddresses, and spentAmounts. These functions consider
only the rcv, arcv, amt, and aamntt fields, potentially overlooking other relevant
fields such as asnd.

Coinspect has developed a test case that demonstrates the inaccuracies in
reporting when a clawback address is utilized. Further details can be found in the
Appendix.

Recommendation

Parse these special fields correctly.

Status

The Multichain Client Library now takes into account the extra fields. The
implementation added some extra getters. It is up to clients to actually use them
correctly.

https://developer.algorand.org/docs/get-details/transactions/transactions/#asset-clawback-transaction
https://developer.algorand.org/docs/get-details/transactions/transactions/#asset-transfer-transaction
https://developer.algorand.org/docs/get-details/transactions/transactions/#payment-transaction

© Coinspect 2024 10 / 15

MCC-2

UTXO chains return transactions not yet
included in a block

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

/src/chain-clients/UtxoCore.ts

Description

The library's behavior includes returning UTXO-chain transactions that reside
solely in the mempool, awaiting inclusion in a block. This could potentially mislead
clients into considering transactions that will never be confirmed.

This behavior is unexpected for users of the library, as it lacks documentation and
diverges from the approach taken for transactions from other chains. For instance,
while Algorand throws an exception in similar scenarios, Ripple only returns
transactions already included in a block. To address this issue, users of the library
must be aware of the need to query tx.data.confirmations > 0 to ensure that
transactions are included in the mainchain.

© Coinspect 2024 11 / 15

The root of the problem lies in the usage of the getrawtransaction method
without specifying a block hash, a practice that results in the retrieval of
transactions from the mempool.

 let verbose = true; // by default getting transaction is in verbose
mode
 let unTxId = unPrefix0x(txId);
 let res = await this.client.post("", {
 jsonrpc: "1.0",
 id: "rpc",
 method: "getrawtransaction",
 params: [unTxId, verbose],
 });

Users of the library that have implemented custom confirmation requirements will
not be affected by this problem.

Recommendation

Make the user explicitly state that they are requesting either a finalized
transaction, a transaction included in at least a block or a mempool transaction.

Status

A check has been added so transactions without at least one confirmation are not
returned.

https://developer.bitcoin.org/reference/rpc/getrawtransaction.html

© Coinspect 2024 12 / 15

MCC-3

UTXO chains use wrong data to report status

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Medium

Location

src/base-objects/status/UtxoStatus.ts

Description

UTXO chains report wrong network data from the node, leading a client blind to
problems with their node or its synced status. As with all components in the
library, the impact of this is very dependent on how the client code uses the
affected functions UTXO chains use the networkactive key from the
getnetworkinfo RPC endpoint to report both if it a node is synced and if it is
healthy:

 public get isHealthy(): boolean {
 return this.data.networkactive;
 }

 public get isSynced(): boolean {
 return this.data.networkactive;
 }

© Coinspect 2024 13 / 15

This field has no relationship to neither of health or sync status. networkactive
will only return whether the p2p network is enabled on the node, a boolean flag
that is by default true and can be changed at will by calling setnetworkactive.

Recommendation

Use verificationinprogress or initialblockdownload to know whether a node is
synced.

For isHealthy, the answer is more nuanced, as it depends on what the definition of
healthy is for the library. This should be documented, but a mixture of the
response codes and the warnings fields present in getnetworkinfo should help.

Status

The isSynced endpoint now uses initialblockdownload, as mentioned in the
recommendation.

The isHealthy has not changed.

© Coinspect 2024 14 / 15

Appendix

Testcases

MCC-1

it("Should correctly interpret asset sender", function() {
let txToModify = block.data.block.txns[0];
// when an asnd is present, this will actually be the
// person to loose tokens, _not_ the snd!
txToModify.txn.asnd =

algosdk.decodeAddress("QC7XT7QU7X6IHNRJZBR67RBMKCAPH67PCSX4LYH4QKVSQ7DQZ32P
G5HSVQ").publicKey;

// the sender will actually be the clawback address
txToModify.txn.snd =

algosdk.decodeAddress("EW64GC6F24M7NDSC5R3ES4YUVE3ZXXNMARJHDCCCLIHZU6TBEOC7
XRSBG4").publicKey;

// in the example, the clawback is reclaiming tokens back to itself
txToModify.txn.arcv =

algosdk.decodeAddress("EW64GC6F24M7NDSC5R3ES4YUVE3ZXXNMARJHDCCCLIHZU6TBEOC7
XRSBG4").publicKey;

block.transactionObjects = [];
block.data.block.txns = [txToModify];
block.processTransactions();
expect(block.transactions.length).to.eq(1);
let transaction = block.transactions[0];

expect(transaction.sourceAddresses.length).to.eq(1);
expect(transaction.receivingAddresses.length).to.eq(1);

expect(transaction.sourceAddresses[0]).to.eq("QC7XT7QU7X6IHNRJZBR67RBMKCAPH
67PCSX4LYH4QKVSQ7DQZ32PG5HSVQ");

expect(transaction.receivingAddresses[0]).to.eq("EW64GC6F24M7NDSC5R3ES4YUVE
3ZXXNMARJHDCCCLIHZU6TBEOC7XRSBG4");
})

© Coinspect 2024 15 / 15

Disclaimer

The information presented in this document is provided “as is” and without warranty.
Source code reviews are a “point in time” analysis, and as such, it is possible that
something in the code could have changed since the tasks reflected in this report were
executed. This report should not be considered a perfect representation of the risks
threatening the analyzed system.

