Attestation Client
Source Code Review

cQinspect = flare

cOinspect

Attestation Client

Source Code Review

Version: v240220 Prepared for: Flare November 2023

Security Assessment

Executive Summary

Summary of Findings
Findings where caution is advised

Solved issues & recommendations
Assessment and Scope
Fixes review
Detailed Findings

Disclaimer

© Coinspect 2024

1/27

Executive Summary

Attestation Client. The objective of the project was to evaluate the security of the
application, which is a critical off-chain component of its attestation ecosystem.

The attestation client is a crucial dependency of Flare’s State Connector contract and
uses Flare’s Multichain Client Library as a component. Because of the interlink
between these systems, Coinspect analyzed both the code itself and design issues
arising from the interaction between them and the underlying chains. Design and
operational risks that are not directly related to the codebase but should be taken into
account are reflected in the Assessment and Scope section of this report.

v A X

Solved Caution Advised Resolution Pending
High High High
3 0 0
Medium Medium Medium
1 3 0
Low Low Low
2 0 0
No Risk No Risk No Risk
0 0 0
Total Total Total

6 3 0

ATC-1 represents the risks associated with the current storage of secrets. ATC-2
describes a vulnerability present specifically for the XRPL blockchain where unfinalized
transactions might be considered for attestation. Both ATC-3 and ATC-4 represent

© Coinspect 2024 2/27

https://coinspect.com/

ways in which the network may halt, be it because providers will crash or will not
agree on the votes. ATC-5 is related to inherited risks of using some blockchain
transactions which are malleable. ATC-6 talks about the difficulty of users to make
correct decisions on some scenarios. ATC-7 informs the risks of not having integration
tests in a system which heavily depends on the interaction with other external
systems. Lastly, ATC-8 describes a scenario in which providers will consider old blocks
for around.

© Coinspect 2024 3/27

Summary of Findings

Findings where caution is advised

These issues have been addressed, but their risks have not been fully mitigated. Any
future changes to the codebase should be carefully evaluated to avoid exacerbating
these issues or increasing their probability.

Findings with a risk of None pose no threat, but document an implicit assumption which
must be taken into account. Once acknowledged, these are considered solved.

Id Title Risk

ATC-5 Transaction malleability issues make it easier to scam users Medium

ATC-7 Lack of integration tests Medium

ATC-9 Insufficient or incomplete test cases Medium

Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk
ATC-1 Secrets not stored securely High
ATC-2 Non final XRPL transactions are attested High
ATC-3 Attestation client will cracs:cﬁze to unbound growth of a High

© Coinspect 2024 4/27

ATC-6 Users can lose money resubmitting rejected transactions Medium

Unexistence of upperBoundProof block may lead vote

ATC-4 s
splitting

Low

ATC-8 Attesters will vote on old requests when restarted Low

© Coinspect 2024 5/27

Assessment and Scope

The audit started on June 23 and was conducted on the as-audit branch of the git
repository at https://github.com/flare-foundation/attestation-client/ as of commit
9973c18be55f2352498f479590b935b41badec89 of Jun 23.

The assessment focused on:

e The custom merkle set created by Flare

e The attestation process itself: its voting process and the transactions included in
the merkle set root

¢ Interactions between the client and the blockchain nodes that may cause problems
such as denial of service or incorrect information

¢ Interactions between the client and the Multichain Client Library - Blocks and
transactions ingestion by in the indexer

¢ Verification operations on valid and confirmed transactions

The version reviewed by Coinspect does not seem to be production ready: there are
multiple comments marked with TODO and some functionally appears to be
unimplemented. For example, at the moment, absolutely all XRPL transactions are
considered a valid trustline issuance transaction: the verification is not vyet
implemented and simply returns Valid for all passed transactions.

Operational risks arise from the trust placed in providers: an attacker could try to
impersonate Flare to try to get providers to update to a malicious version of the
program. Coinspect shared ideas with the Flare team on how to reduce operational
risks regarding software updates, like setting up a mechanism which involves a
cryptographically signed update or even publishing a known hash in a smart contract to
announce updates.

Another risk is the compromise of the passwords and specially the secret keys handled
by the attestation providers. This risk is specially discussed in ATC-01, which talks
about the insecure handling of secrets in the project. Many.hridges get compromised
directly through their validators, which makes ensuring a minimum safety for these is
of the utmost importance.

Even without malicious actors, at the moment there are no incentives for providers to
behave according to the expected rules. The lack of an incentive mechanism was a
well-known fact for Flare at this point in the project, but nevertheless it is worth
noting that many of the intended security properties of the system rely upon its

© Coinspect 2024 6/27

https://cointelegraph.com/news/the-aftermath-of-axie-infinity-s-650m-ronin-bridge-hack

design. Being an attestation provider is an expensive operation and incentives should
take the cost of behaving honestly into account.

For the purpose of this audit, the majority of attestation providers were assumed to be
trusted: attacks that an important percentage of providers to collude were not
considered. In general, a majority of attestation providers being malicious means the
system will not hold.

Even a big minority of compromised attestation providers colluding could halt the
network, as it is a requirement that 50% of the network reaches consensus on the
merkle root. If a big minority does not collaborate, the rest of the network must agree
on the merkle root, which may be difficult due to different confirmation times and
setups for each different attestation provider.

Risks associated with a halting of the network due to underlying chains node’s
behaving inconsistently were acknowledged by Flare and they have stated that they
will implement a system to temporarily drop support for the affected blockchain. It is
worth noting though that as of the audited commit, if nodes from a particular
blockchain start to return inconsistent responses or answer intermittently, it is likely
the whole attestation system will halt as well.

Coinspect informed Flare of some concerns regarding the user experience of the
project. This risk is reflected particularly in ATC-6. Flare is aware of this risk and plans
to have in place a system of discovery for attestation providers such that users can
always find at least one helpful provider. Flare also expects wallet integrations on
different chains to provide abstraction for end users of the system.

The quality of the codebase can be improved, especially considering how critical it is for
the security of the attestation system. Specially, the usage of callbacks to handle
control flow could be improved. As it stands right now, callbacks are set in different
places for different objects, which makes creating a mental flow of how each
component interacts with the other difficult. Improving this would make finding bugs
easier.

Lastly, it is worth noting that this audit heavily prioritized some critical paths of the
codebase, as the time assigned was not sufficient to perform a thorough analysis of
each aspect of the program. Coinspect recommends to continue auditing the
attestation client as well as other components of the system. Flare has stated that
they plan to do so and that they do not consider the system as it stands today as
production ready.

© Coinspect 2024 7127

Fixes review

and a document outlining their reasoning on every change. Overall, the fixes were
correct and addressed the vulnerabilities reported. Two issues (ATC-4 and ATC-8) had

their severities reduced after clarifications made by the Flare team.

© Coinspect 2024 8/27

https://github.com/flare-foundation/attestation-client/tree/as-audit-0-fix

Detailed Findings

ATC-1

|
Secrets not stored securely

Status Ri§k
Solved High

Impact
High
R?solution IL-iIIEgiI:OOd
Fixed
Location

/test/chains-config.json

Description

Secrets were found in the public Github repository. These gave access to internal
Flare services. Furthermore, the system supports storing secrets in the filesystem
and configuration files, which is not secure.

Coinspect alerted the Flare team immediately upon discovery of the leak and
recommended the secrets to be rotated immediately.

© Coinspect 2024 9/27

Recommendation

Do not let users hardcode secrets in configuration files, server files or
environment variables. Support several cloud providers. Recommend attesters to
use a hardware device with the keys, so they can’'t be extracted. Note that not
even an actual HSM will protect against compromise of the server and signing
arbitrary transactions.

Attesters should run the exposed proof HTTP API independently and separately
from the systems handling a private key. This would make it less likely for critical
keys to be exposed.

Status

Flare responded quickly once the leak was discovered and fixed it. They have
stated that they are in the process of building recommendations for attesters on
how to protect their secrets.

© Coinspect 2024 10/27

ATC-2

Non final XRPL transactions are attested

Status Risk
Solved High
A 4
Impact
High
: Likelihood
R?solutlon High
Fixed
Location

Attestation Client

Description

XRPL finality is not correctly handled, potentially leading to wrong transactions
being attested or the wrong merkle root being calculated. The XRPL confirmation
height is defined as 1 block, but XRPL transactions are confirmed when their block
(or ledger) is validated, not on a fixed amount of confirmations on top.

To ingest blocks from the XRPL blockchain, the Attestation Client uses the
getBlock method of the XRPL RPC via the Multichain Client Library, which will use
the ledger JSON RPC call.Then, it uses the confirmation block number in the
settings of the Attestation Client to determine if a transaction is final or not.

// MCC client should support hash queries
let newPromise = this.client.getBlock(blockHashOrNumber);
if (typeof blockHashOrNumber === "number") {

let block = await newPromise;

© Coinspect 2024 11/27

if (!'block) return null;
let blockHash = block.blockHash; // TODO
this.blockCache.set(blockHash, newPromise as Promise<any>); // TODO

type
} else {

this.blockCache.set(blockHashOrNumber, newPromise as Promise<any>);
// TODO type

}
this.checkAndCleanup();

return newPromise as Promise<any>; // TODO type

}

documentation..states, the ledger RPC returns a validated field that indicates
when that particular block is finalized. This is not taken into account by the
attestation client, which should be responsible for accepting only finalized
transactions.

Recommendation

Check the validated field of incoming blocks to make sure its transactions are
confirmed. Alternatively, use ledger_closed instead of ledger in the MCC.

Status

The issue was fixed by:

1. Adding a isValid() method to the Multichain Client Library, which returns
the validated field of blocks in Ripple.

2. Waiting until that method returns true to continue processing in the
Attestation Client.

© Coinspect 2024 12/27

https://xrpl.org/ledger.html

ATC-3

]
Attestation client will crash due to unbound

growth of a cache

Status Risk
Solved High
A 4
Impact
High
: Likelihood
R?solutlon High
Fixed
Location

lib/caching/CachedMccClient.ts:144

Description

The Attestation Client will eventually crash due to a bug that prevents the blocks
and transactions cache from being cleaned up.

The main growth of the cache is due to its usage when receiving a new confirmed
block on the DOGE blockchain, where each new transaction in the DOGE block is
added to the CachedMccClient. This causes the cache to grow fairly quickly. The
cleanup() function should remove blocks and transactions from the corresponding
caches when the blockCleanupQueue and transactionCleanupQueue exceed
specified limits as shown in the following code snippet:

private cleanup() {
if (this.blockCleanupQueue.size >= this.settings.blockCacheSize +

© Coinspect 2024 13/27

this.settings.cleanupChunkSize) {
while (this.blockCleanupQueue.size > this.settings.blockCacheSize)

{
this.blockCache.delete(this.blockCleanupQueue.shift());

}
}
if (this.transactionCleanupQueue.size >=
this.settings.transactionCacheSize +
this.settings.cleanupChunkSize) {
while (this.transactionCleanupQueue.size >
this.settings.transactionCacheSize) {

this.transactionCache.delete(this.transactionCleanupQueue.shift());
}
}
}

Recommendation

However, Coinspect noticed that both blockCleanupQueue and
transactionCleanupQueue are not being filled with the items to be deleted.

Hence, the actual caches will never be cleaned up.

Status

Fixed by following the recommendation: now the queues are correctly filled, so
the system will remove them in time.

© Coinspect 2024 14/27

ATC-4

|
Unexistence of upperBoundProof block may

lead vote splitting

Status Risk
Solved Low
) 4
Impact
Medium
Resolution Likelihood
. Low
Fixed
Location

Attestation Client

Description

The Synchronized query window system designed to synchronize the root hash is
susceptible to race conditions that would make the attesters vote incorrectly.

If the indexer does not know the confirmation block provided in the attestation
request, the client waits 30 seconds until a retry looking for the block happens. If
the commit phase ends before that, i.e. it has passed the 60 seconds mark of the
voting window, then the attestation will be ignored by that particular attester.

Users submitting attestation requests for blocks that just appeared on each
underlying blockchain will trigger this issue frequently, forcing the attesters to
vote different hashes in a pseudo random fashion.

© Coinspect 2024 15/27

Recommendation

Add a validation for the confirmation block timestamp. Let's say that the
confirmation block timestamp in seconds is T and the timestamp of the Flare block
where the attestation request event was emitted in seconds is R, then add a
validation for

T<R-S

The current assumption on the code would suggest that S = 30 seconds is
enough, but a higher value is recommended because multiple blockchains accept
blocks in the future.

Status

Coinspect originally considered this issue a High risk issue, but has updated the
report to be more accurate after the Flare team provided research and rationale
supporting their conclusion that their system is robust enough, at least for Bitcoin
blocks. The small likelihood of this issue triggering is considered protection
enough by Flare.

It is nevertheless worth keeping in mind that the probability of the issue
happening increments with the amount of supported blockchains. Furthermore, it
should be noted that the system implicitly depends on the speed on which
supported blockchains relay their nodes in their network.

Flare has independently found an issue in this component related to selfish miners
mining old forks. The fix for that particular problem is out of scope for this audit.

© Coinspect 2024 16/27

https://sites.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/bitcoin-delay

ATC-5

|
Transaction malleability issues make it easier

to scam users

Status Risk .
Caution Advised Medium

v

Impact
High
Likelihood

Resolution
Low

Partially Fixed

Location

Attestation Client

Description

An attacker looking to scam users can change the hash of a victim’s transaction on
some blockchains, making it hard for them to attest for their transaction.

Bitcoin non-segwit transactions and XRLP multisig transactions are malleable,
which make it possible for attackers to replace transactions.

To exploit this, an attacker has to wait until a user sends them a deposit on a
vulnerable underlying chain, such as non-segwit Bitcoin. Once the user performs
the deposit, and before the transaction is confirmed, the attacker will replace the
transaction for one identical to the one sent by the user, but with a different hash.
The replacement mechanism varies by chain, but in Bitcoin could be done by
allocating a bigger fee to miners.

© Coinspect 2024 17/27

When the user then tries to attest for their transaction, the attestation client will,
rightfully, reject it, as the transaction is nowhere to be found on the blockchain.
The only way for a user to prevent this is for them to be aware of these issues in
the underlying chain, monitor the blockchain for new transactions that originate
from their account or UTX0’'s, and submit an attestation with the new hash before
the transaction is deemed stale (by the lower boundary in the search for
transactions, which is dependent on the round id).

This is not an issue directly related to the Attestation Client, but because the
system trusts the security of the underlying chains, it directly affects it. The
likelihood is low because most sources of malleability, at least in Bitcoin, have
been deemed non standard and will not be relayed by nodes before their inclusion.
Nevertheless, there are no consensus rules that force this to happen.

Recommendation

The Attestation Client may not be able to directly solve the problem, but it can
mitigate it. Some strategies to do so are:

¢ Clearly inform users about this issue in underlying chains such as Bitcoin and
XRPL.

¢ Never accept malleable transactions. This makes it clear cut for users of the
systems that vulnerable transactions are not accepted and less likely for them
to make them send funds to a scammer. In Bitcoin, this would mean attesting
only for segwit transactions. In XLRP, this would mean not accepting multisig
transactions.

As Flare plans to have integration with wallets which abstract details from users,
wallets should only send non-malleable transactions.

A service could also be provided which makes it easy for users to find their new
transaction hash in case they do not use wallets approved by Flare.

Status

Flare will address this only by warning users about the risks involved.

© Coinspect 2024 18/27

ATC-6

|
Users can lose money resubmitting rejected

transactions
Status Risk
Solved Medium
A 4
Impact
Medium
: Likelihood
R?solutlon High
Fixed
Description

Users have no way to discern between a problem with their underlying
transaction, censorship, attestation providers being at full capacity for their
attestation or just their request being too late. This leads to them making the
wrong choices, such as retrying an attestation that will fail again, making them
waste gas and time.

This is due to the attestation client not announcing why a transaction request was
not included in the merkle root for that round.

When a transaction is not included in the merkle trie, the user is left with the
option of going through several attestation providers before deciding they are not
being censored. Even then, the user cannot know if they were too late into the
round or surpassed their capacity, or if there is a problem with the underlying
transaction (for example, an attacker changing their transaction ID as reported in
ATC-5).

© Coinspect 2024 19/27

Recommendation

Consider implementing a mechanism to inform users when an attestation request
cannot be processed. Attester could provide this information via an API, like they
do for proofs.

Status

The recommendation was followed and now there is an endpoint to check the
status of attestations.

© Coinspect 2024 20/27

ATC-7

Lack of integration tests

Status Risk]
Caution Advised Medium
v
Impact
Medium
i Likelihood
Resolution woiheod
Acknowledged
Description

Lack of integration tests makes it hard to find bugs and vulnerabilities quickly and
reliably. As the project depends on the correct interaction and information retrieval
from several underlying chains, and the consensus across multiple attestation
clients, not performing proper integration testing could conceal bugs related, but
not limited to:

¢ the actual view of the blockchain by nodes, which could be different from other
attestation clients,

¢ the timing of attestation requests submitted by users,

¢ the coordination of voting windows

Given that the correct operation of the Attestation Client depends on the
interaction with multiple blockchain nodes and a minimum expected
synchronization, integration tests are heavily recommended.

© Coinspect 2024 21/27

Recommendation

Consider creating an integration test suite which would ingest data (blocks,
transactions, addresses, etc) from production/testnet blockchain portions. To
perform tests on real, controlled blockchains would allow developers to test the
system under realistic conditions while expecting the same results along several
executions. Once integration tests on a limited environment pass, evaluate
switching to a testnet environment.

Integration tests should include, but not be limited to, the correct ingestion of
blocks and transactions as well as the processing of many different attestation
requests through multiple attestation rounds by multiple attestation clients.

Status

The issue was acknowledged and more tests will be added in the future.

© Coinspect 2024 22/27

ATC-8
|

Attesters will vote on old requests when

restarted
Status Risk
Solved Low
A 4
Impact
Low
Resolution Likelihood
. Low
Fixed
Location

lib/attester/AttesterClient.ts

Description

On startup, attesters will choose events from an old block to attest transactions,
leading to wrong votes.

When initializing, the attestation client uses the method getBlockForTime to
choose the block they should start from. This method uses the timestamp from
the roundId to choose a block, but decrements happen in steps of 10 blocks. This
can cause blocks from a previous roundId to be collected and their events

considered.

async getBlockForTime(time: number) {
let blockNumber = await
this.attesterWeb3.web3Functions.getBlockNumber () ;

© Coinspect 2024 23/27

while (true) {
let block = await
this.attesterWeb3.web3Functions.getBlock(blockNumber);
if (block.timestamp < time) {
this.logger.debug2(start block number ${blockNumber} time
${secToHHMMSS(block.timestamp)}) ;
return blockNumber;

}
blockNumber -= 10;

}
}

Recommendation

Use the first block from the current round, instead of returning a block that is
potentially 10 behind the current round.

Status

Even though the starting block may be stale, Flare pointed out these would not be
considered for voting purposes due to a protection in the attestate method.

This issue was originally considered a Low risk issue by Coinspect, but was
updated to Info to reflect that there is no risk in practice.

© Coinspect 2024 24 /27

ATC-9

Insufficient or incomplete test cases

Status Risk)
Caution Advised Medium
v
Impact
Medium
i Likelihood
Resolution wiheod
Acknowledged
Description

Insufficient testing added to errors identified in current test cases hinders the
detection of unexpected outcomes or behaviors. Given the criticality of the
Attestation Client, the current test suite could be improved to cover more
functionality and possible execution paths in its test cases.

As an example, in test/verification/verification.test.ts:41 the number of
confirmations required is preset for all the test cases independently of the
underlying chain being tested:

let NUMBER_OF_CONFIRMATIONS = 6;

Furthermore, tests in the above mentioned file only test for happy paths, ignoring
the possibility of an invalid or malformed Attestation Request for instance.\

On the other hand, the number of tests for the blocks Indexer might not be enough
to cover its entire functionality or might not test unexpected conditions such as

© Coinspect 2024 25/27

the absence of specific blocks.

Finally, consultants identified a minor error in
test/IndexedQueryManager.test.ts:91, consisting in a typo. Should have been
randomTransaction2 instead of randomTransactionl twice.

Recommendation

Make sure tests are performed using configurations similar to the ones expected
for a productive environment (e.g., the correct number of confirmations expected).

Consider increasing the number of test cases to cover unexpected or unhappy
paths, as well as performing code coverage tests.

Status

The issue was acknowledged and more tests will be added in the future.

© Coinspect 2024 26/27

Disclaimer

The information presented in this document is provided “as is” and without warranty.
Source code reviews are a “point in time” analysis, and as such, it is possible that
something in the code could have changed since the tasks reflected in this report were
executed. This report should not be considered a perfect representation of the risks

threatening the analyzed system.

© Coinspect 2024 27127

